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Abstract—Uncertainty in electricity markets introduces risk
for investors. High fixed cost and increased dependency on
infrequent and uncertain price spikes characterize investments.
The risk-averse behavior of investors might lead to poor decision-
making and undermines generation adequacy. Electricity market
models rarely treat the interaction of market design and risk
aversion. The representation of capacity mechanisms in modeling
approaches focusing on risk aversion is limited. Our contri-
bution addresses two problems. First, we propose a stochastic
market equilibrium model. Investors are represented as risk-
averse agents. The Conditional Value-at-Risk is used as risk
measure. Second, we propose an algorithm based on the Al-
ternating Direction Method of Multipliers to compute a risk-
averse equilibrium. We benchmark our approach with a state-
of-the-art solver relying on a Mixed Complementarity Problem
reformulation. We show that for larger case studies our proposed
approach is preferable. The algorithm converges in all cases while
conventional solvers fail to compute a risk-averse equilibrium.
The methodology is transferable to other risk-averse equilibrium
models. With reference to capacity markets, we conclude that
they are more beneficial in a risk-averse market. Capacity
markets result in lower total cost, while avoiding expected energy
not served. This statement still holds with increased price caps
in energy-only markets.

Index Terms—Alternating Direction Method of Multipliers,
Capacity Mechanisms, Market Equilibrium, Power System Eco-
nomics, Power System Planning, Risk Analysis

NOMENCLATURE
A. Sets

Set of time steps

Set of scenarios

Set of all agents

Set of generators

Set of strategies for generator ¢

Set of strategies for consumer c

Set of strategies for price-setting agent p
Set of all combinations of strategies

RS RRZ L 0

B. Parameters

Weighting factor of each time step
P Probability of scenario

)\Z, X, Price caps on markets E€/MW,€/MWh

5t  Demand on energy-based market MWh/h

A Target price on capacity market €/MW

D¢ Target demand on capacity market MW

D, D,  Minimum and maximum capacity demand MW

C§  Variable cost of generation €/MWh

C™  Annualized fixed cost E/MW
Aisit Underlying profile of availability

R;  Ramping rate of technology

Credits for RES target

Credits for capacity market

Bi  Probability level in (0,1) for agent ¢
vi  Weighting of objective function

p  Penalty factor used in the algorithm -
Stopping criteria based on primal and dual residuals -

¥,
C. Strategies of agents
Xi Strategy (x5 ; 1, 25 s, 25 5, ¢i) of generator i
x5 s Energy output of generator i MWh
x; s  RES certificates of generator 4 MWh
x; s Available capacity of generator i MW
¢; Installed capacity of generator ¢ MW
Xe Strategy (¢ . ¢, Th o, Tors, T ) Of consumer ¢
;ci st Energy non-served MWh
Z.s Gap RES certificates MWh
xféb Capacity demand MW
xes  Unserved capacity demand MW
Ap Prices (A5 4, A5, AS) set by price-setting agent p
5+ Hourly price for energy output €/MWh
As  Annual price for RES certificates €/MWh
AZ  Annual price for capacity €/MW

D. Auxiliary

u;s  Utility of each agent ¢ for scenario s
a; Approximation of Value-at-Risk (endogenous) for 3; €

CVaR;(-)  Conditional Value-at-Risk for 3; €
IT;(-)  Utility function of each agent ¢ €
mi(-)  Profit function of generator ¢ €

I. INTRODUCTION

NVESTMENTS in generation technologies in the power

sector are taken with expectations about future revenues to
recover initial capital expenditures. This affects conventional
technologies with varying ratios of fixed and variable costs,
as well as emerging Renewable Energy Sources (RES) with
high fixed and low variable costs [1]. This implies that each
investment is assessed thoroughly for uncertainties and risks.

Uncertainties and the resulting risks in the power sector have
increased in both kind and extent. First, the development of
decentralized generation and demand response have introduced
a major uncertainty about the development of residual demand.
This uncertainty comprises both peak load levels and con-
sumption patterns. The uncertainty is further amplified by the
intermittent injection of RES. Second, operational cost of gen-
eration depends on the underlying prices for resources such as
natural gas, subsidy schemes and the prices of CO, emissions.
This dependency is transferred into the cost of generation
and consequently manifested in variable prices of electric
energy. Finally, increasing uncertainties about energy policy-
making and regulation introduce major risks on investment
in generation technologies. Ever-changing market designs,
support mechanisms, and regulations for market participation
reduce confidence in the generators’ long-term profitability.
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With the objective of restoring the confidence of investors
and provide stable long-term market signals, capacity mecha-
nisms (CMs) have been implemented in order to complement
energy-based markets. By remunerating firm capacity, they
should provide an adequate long-term price signal [2]. The
goal is to ensure generation adequacy by setting a minimum
capacity demand [3]. A discussion of currently implemented
CMs together with a detailed description is provided in [4].
CMs interact with markets for electric energy, markets for
flexibility or ancillary services, and support schemes for RES.
A detailed study of the economic results is provided in [5].

Investors in the power sector are typically risk-averse i.e.,
they have a negative evaluation of risk. In other words,
the investors attribute higher importance to less favorable
future outlooks. The combination of high fixed costs and the
dependency on occasional peak pricing are perceived as a
hurdle for new investments.

In order to capture these risks in the changing power sec-
tor, long-term models including investment decisions require
two main adaptations. On the one hand, the models should
capture uncertainties by means of multiple scenarios varying
the parameters related to the sources of uncertainty. On the
other hand, high temporal resolution is necessary to capture
uncertainties related to variability and occasional scarcity. The
risk aversion of investors should be incorporated and modeled
by risk measures altering the objective of the investors.

A. Risk aversion in capacity expansion models

Investment decisions must be taken accounting for multi-
ple more or less probable future outlooks. Investors create
scenarios to capture both the most probable future outcomes
and to account for less probable outcomes but with the most
extreme results. This is the typical way of quantifying risk
as the combination of probabilities and revenues for a set
of scenarios. Risk-neutral behavior describes decision-making
based on expected profits, hence, taking all scenarios into
account based on their given probabilities [6].

Because of the changing market circumstances and the
nature of the capital-intensive investment, it is valid to assume
that investment decisions are taken in a risk-averse manner. In
other words, investors assign higher weights to the scenar-
ios with worse profits. Naturally, this makes the investment
decisions differ from the risk-neutral decision. One extreme
example is the worst-case approach in which only the scenario
with the worst profit is the baseline for decision-making. In
general, risk measures describe the way in which weights are
assigned to given scenarios [7].

Considerable effort has been made in the description of
different risk measures and their application in various in-
dustries [7], [8], [9]. One popular risk measure for repre-
senting risk-averse behavior is the Value-at-Risk (VaR) and
Conditional Value-at-Risk (CVaR;), also Average Value-at-
Risk, introduced in Rockafellar and Uryasev [8]. Let [3; be a
probability level in (0,1) for each agent that describes the risk
aversion. The VaR is defined as a percentile for 3; of the profit
distribution of scenarios. The CVaR; describes the average of
the scenario profits equal or worse to the VaR. As a result,

in contrast to the VaR, the CVaR; also contains information
about the distribution of the scenarios with the worst profits.
An extensive list of risk measures and their implications is
given, for example, in [7]. The methodology that we propose in
this paper could be extended to a larger class of risk measures
next to CVaR;.

In Section II, we position our market equilibrium model
in market models with different capacity mechanisms and
highlight our contribution with respect to the literature. As
a starting point, we use the approach of incorporating risk
measures in equilibrium models introduced in [9]. The authors
apply the CVaR; in an equilibrium model with investment
decisions. The model is solved by a reformulation as a Mixed
Complementarity Problem (MCP). This approach is used for
benchmarking our proposed methodology.

B. Contributions

Our contribution focuses on two missing elements in the
literature that were identified. First, we assess the impact of
capacity mechanisms on risk-averse market participants. In
order to do so, risk measures are introduced to the modeling
of market participants’ decision-making. The initial purpose
of risk reduction through capacity mechanisms can only be
assessed to a limited extent in a risk-free context. Detailed
capacity expansion models with capacity mechanisms [10],
[11] do not include risk measures yet. Existing stochastic
capacity expansion planning models in the literature [9], [12]
under-represent the characteristics of capacity mechanisms by
adding a simplified capacity constraint. A combination of both,
however only incorporating cases with two technologies, can
be found in [13]. We contribute to the existing literature on
capacity expansion planning by proposing a model formulation
that closes this gap. The proposed model accounts for a repre-
sentation of a capacity mechanism. In particular, a centralized
capacity market with a downward-sloped demand curve is
introduced. At the same time, the proposed model takes into
account risk-averse behavior of multiple agents by using the
risk measure CVak;.

Second, the introduction of risk measures in market equilib-
rium models introduces non-convexity as described in Ralph
and Smeers [14] and consequently new challenges to the
solution techniques. As stated in [9], [15], [16], state-of-the art
solvers based on MCP reformulation [17] are not necessarily
able to find an equilibrium for large-scale capacity expansion
problems including endogenous risk measures. As a result
of these solver problems, the numerical examples are very
limited. Our contribution proposes an algorithm inspired by
Alternating Direction Method of Multipliers (ADMM) in form
of the optimal exchange as described in [18]. Our approach for
equilibrium models brings advantages in computing a Nash
Equilibrium (NE) for settings with risk-averse agents based
on CVaR;. At the same time, the findings offer hope that it is
also applicable for computing a NE with other risk measures.
The methodology enables us to simulate larger case studies
in terms of scenarios, temporal resolution, and number of
risk-averse market participants thanks to the proposed iterative
updates of the agent’s decisions and the market prices.
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In Section II, we describe the capacity expansion planning
model in a risk-averse setting as an equilibrium problem which
has a NE as solution concept. Thereafter, Section III describes
the proposed methodology based on ADMM that we use to
compute an equilibrium. Section IV applies the methodology.

II. CAPACITY EXPANSION PLANNING AS A
NON-COOPERATIVE GAME

We describe a capacity planning model that involves price-
taking agents without market power including generators and
a consumer. Additionally, a price-setting market agent is
included. The problem is formalized mathematically as a
non-cooperative game in strategic form. We detail the utility
functions of all the agents involved. The generator problem is
presented in a risk-averse setting.

A. Solution concepts

A non-cooperative game with market clearing conditions is
formulated as presented in Fig. 1. The set of agents is defined
as A = (Gy)ien U {c} U {p} (finite number of generators
(Gy)ienr, One consumer ¢ as an aggregation of a multiplicity
of atomic consumers, and a price-setting agent p). Our goal is
to compute a NE as solution of the non-cooperative game. We
assume that all agents’ strategies belong to a bounded set, as
classical in Kakutani’s fixed point theorem that is used to prove
the existence of a NE. Arrow and Debreu [19] introduced
the game approach to general equilibrium. An alternative
presentation is given in Mas Collel er al. [20]. We apply the
same reasoning in the simpler context of partial equilibrium
problem as developed in de Maere d’Aertryke and Smeers
[21], for both a NE and Generalized Nash Equilibrium (GNE),
and Ralph and Smeers [14].

For all agent i € A, we denote X its set of strategies. We
let X := x;c44; denote the set of all possible combinations
or profiles of strategies that may be chosen by the agents in A4,
when each agent ¢ € A chooses one of its strategies in X;. We
now introduce the utility function of all the agents involved in
the game: for any agent i € A we define its utility function
II; : X — R. This setting gives rise to a non-cooperative
game for the price-taking agents ' := (A, X, (IL) ¢ A) that
we formulate in strategic form, where each agent maximizes
selfishly its objective II;. We let x_; be the vector containing
the strategies of all the other agents in A than 4. Formally,
given the strategies of all the other agents in 4, x_;, each
agent ¢ € A solves independently and simultaneously:

;?3))((7 H’L(X’L?X*l)‘ (1

The associated solution concept is that of a NE [22], [23]:
a strategy profile x* € X is a NE if, and only if, II;(x*) >
IL; (x4, X7 ;). Vi € A, Vx; € AX;. Under the strategy bounded
assumption, it is possible to prove the existence of a NE.

We represent three markets, an hourly market for energy, an
annual market for availability (capacity market) and an annual
market capturing the policy target for RES. The latter is orga-
nized as a market for RES certificates forming a lower bound
for green energy. This market-based price for these certificates
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Fig. 1. Graphical representation of model setup with 3 markets (rectangles)

for energy output, availability and RES certificates. Market participants/agents
(rounded corners) are shown with their decision variables.

forms an additional revenue stream for RES (see Fig. 1). The
price-setting agent, p, sets the prices for energy, availability
and RES certificates, x, = A\, = (A, AS, Ay) € A)p. The
price-setting agent could also be modeled as three indepen-
dent price-setters for each market respectively. Because its
utility functions and constraints for the different markets are
separable, this formulation would yield the same NE. Each
generator ¢ € N decides the offered market volumes and
the installed capacity, x; = (2,7}, %} ¢ ¢i) € A;. The
consumer c decides on non-served energy, capacity demand,
non-served capacity, and the missing RES certificates, y. =
(xi,s,h xcc#:s? xz,sﬂ 355:,5) € XC'

In this paper, we assume that the generators do not antic-
ipate the impact of their investment decisions on the market
clearing prices. In this approach, the market operator moves
simultaneously with the generators. It has a NE as solution
concept.

An alternative approach assumes that the generators antici-
pate the impact of their investments on the prices set by the
market operator. This formulation is a multi-leader (generators,
consumer), one follower (market operator) Stackelberg game,
that can be formulated as a bilevel optimization problem
[24]. The equilibrium of such games are characterized as
Subgame Perfect Nash Equilibrium (SPNE) [23] and tradition-
ally computed using backward induction. Each leader solves
independently and simultaneously an optimization problem
formulated as an Mathematical Program with Equilibrium
Constraints (MPEC), in which the optimality conditions for
the market operator’s program are the constraints shared by
all leaders. The equilibrium problem among the above MPECs
represents a Generalized Nash Equilibrium (GNE) game [25],
that may have zero, a unique or a multiplicity of equilibria
[26]. The comparison of both concepts could be an interesting
future research direction.

B. Risk-averse generators using risk measure CVaR;

In the risk-averse case, each generator i € A has the
utility function II;(x;,Ap), formally given by (2a). Note
that in the proposed model formulation, the utility function
does not depend on the decision of the other generators and
consumer, only on the price-setting agent, A\,. The objective
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is to maximize the weighted (7;) sum of the expected profit
and the risk measure CVaR; with individual probability level
B;, which is based on the profit as well. A ~; > 0 also ensures
that no scenario is valued with an endogenous probability of
0. For ~;=1, the model describes the decision of a risk-neutral
generator.

Each generator 7 € A/ decides on the installed capacity c;
that is valid in all scenarios. The expected profit is the profit
per scenario m; s weighted with each scenario’s probability
P,. The profit originates from the revenues achieved over
the different markets. The revenues are based on the offered
energy output z;  ,, offered RES certificates z; , and offered
availability z; . multiplied with the respective prices.

The costs depend on the variable cost of generation C¥%
and the investment cost Ci"™. Each generator i € N solves
the following optimization problem to determine its optimal
investment and offereds values:

II;?«XHi(Xi, Ap) =i ZPS “Ti,s(Xis Ap)
° s=1

+ (1 - 71) : CvaRl(XM Ap)7 (2a)

st @ e < Aijse - iy VseS,teT, (pist) (2b)
x:,s,tJrl S x:,s,t + Rl + Ciy VS € 87t S Tv (pj:l;?t) (2C)
&gt > 2500 — Ri- i, VseSteT, (pid)) d)
:Kg,s S CRE + G, Vs S 87 (,u‘z:,e) (26)

T
x;,s S OR; . ng,s,t : WS,h Vs € 8> (u;,s) (2f)

t=1
564, 056, Ty sy € > 0, VseS,teT. 2g)

The CVaR; formulation follows the work of Ehrenmann and
Smeers [9] and is based on the methodology presented in [6],
[8]'. The constraints limit the set of strategies and represent
technical limitations for the offered volumes. For each time
step, the offered energy is limited by the installed capacity
(2b). The change of offered energy from one time step to the
next is limited by the ramping capabilities depending on the
ramp rate R;. This holds for increased (2c) and decreased (2d)
energy output. Similarly, the offered availability is limited by
the de-rated (with factor C'RY) installed capacity(2e). Finally,
the offered RES certificates are limited by total energy output
(2f), de-rated by the factor C'R}. In case of one scenario with
probability P;=1, the model becomes the risk-free determin-
istic model as presented in [10]. The installed capacity and
offered market volumes only take positive values (2g).

C. Consumer c

Consumer ¢ maximizes the expected consumer surplus
IIc(Xe, Ap) given by the consumer surplus across the three
markets, formally described by the utility function (3a). We
assume that the demand for energy and RES certificates is in-
elastic. The demand for RES certificates D is set exogenously
as a share of the total inelastic energy demand D¢ ,. Hence,
in case of insufficient supply the price reaches the,price cap

IFor readability, the reformulation of the CVaR; is only presented in the
electronic appendix, and the formulation is synthesized by the auxiliary term
CVaR; (xi, Ap). The complete linearized model formulation of the CVaR;
risk measure is provided in an electronic appendix provided at
http://esat.kuleuven.be/~hhoschle/paper_admm/
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Fig. 2. Demand curve for capacity-based market with a constant slope Mg
and symmetrical bounds for minimum and maximum capacity demand.

PO Consequently, on the markets for RES and energy, the
consumer surplus is given by the served demand multiplied
by the difference of price cap and market clearing price (see
first and second row of utility function).

The capacity demand is modeled as being elastic, similar
to the current capacity markets in Great Britain [27] with the
simplification that the slope is constant. The sloped part of the
demand curve is described by a linear expression (3b) given
the slope, M¢, and y-intercept, B;. The consumer surplus
can be calculated from the served capacity, z',, not-served
capacity, z¢ ., and the price, AS. As an example, the surplus
is visualized in Fig. 2.

An adaptation of the model to handle changing slopes is
presented in [5]. The same approach can also be used for the
demand for energy, e.g. [28], or RES certificates. Given the
assumptions, the optimization problem of the consumer is as
follows:

5 T
rr)l(z:x HC(XC, )\p) - ZPS |:(A - )\9) . (Ds - xc,s)

s=1

T
+ Z Ws,t : (Xe - )\Z,t) : (Dg,t - mz,s,t) )

t=1

+ (X=X DL 12 (N = X) - (@ - DY) Ga
st xes+at. =M /M; — B:/Mg, Vs€S, (ws) (3b)
mec,s,tvmgtm mcc,m xrc,s 2 07 VS € S>t € T (3C)

D. Price-setting agent p

The price-setting agent, p, sets the prices, \p, on the three
markets given the volumes of the generators, y;, and the
consumer, ... Its objective is to minimize the excess demand?,
formally given by the utility function (4a).

The brackets contain the market clearing conditions for
each market. First, the RES demand, D, is equal to the RES
certificates of all generators plus not-served RES certificates,
zy, 4. Second, the energy demand, DS ,, is equal to the offered
energy of all generators plus energy not-served, x;, ; ,. Finally,
the resulting capacity demand, as defined by the consumer’s
demand curve, must be equal to the offered capacity of all
generators. For all market clearings, either the excess demand
or the price of a market clearing is 0.

The prices, chosen by the price-setting agent, are limited by
the markets’ respective price caps (4b)-(4d). Similarly, price

>The price-setting agent, p, does not have a decision variable that spans
the scenarios. Consequently, the concept of risk aversion is not applicable.
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Fig. 3. Iterations of decentralized update process. This process of optimal
exchange ADMM is also described as a form of “tatonnement”, “trial and
error” or price adjustment process [18].

floors are possible. We assume a lower limit of O for all prices.
Formally, the optimization problem reads as follows:
5 N
niidx HP(AI% Xis XC) = - Z(Z x;,s + xrc,.s - D;) : )‘;

s=1 i=1

s T N

z :z : 2 : e e e e
- ( xi,s,t + xc,s,t - s,t) T A\st

s=1t=1 i=1

S N
=D O i —al) X (42)
s=1 i=1
st 0SS, <X, VseS,teT, (4b)
0< A <N, Vses, (4c)
0< A <X, VseS (4d)

III. METHODOLOGY

In this section, we link the non-cooperative game formu-
lation, I', from Section II, and an algorithmic approach to
compute a risk-averse equilibrium. We propose an algorithm
inspired by ADMM to compute the NE and show the relation-
ship to MCP reformulation. We describe the necessary steps
to ensure that the proposed algorithm converges to a NE.

A. ADMM to compute an equilibrium

We propose an algorithm inspired by ADMM to compute an
equilibrium of the non-cooperative game. Typically, ADMM
is used to solve optimization problems. ADMM offers benefits
if a problem is separable in local optimization subproblems.
ADMM is widely used in decentralized optimization and sees
increased applications in machine learning, image processing,
and decentralized network operation, such as electricity distri-
bution systems or sensor networks [29], [30].

ADMM is known for its good convergence for both convex
and also non-convex optimization. Boyd et al. [18] provide
a convergence proof for convex problems, and recently, more
papers with extended convergence proofs for other classes of
optimization problems are available [31].

The non-cooperative game, I', can be interpreted as a spe-
cific sharing problem, namely an optimal exchange, wherein
equality constraints that combine the otherwise separable
decision variables z; are matched on the market clearing
conditions (Fig. 1) with the dual variables .

Equally to an application of ADMM for distributed opti-
mization, the mechanism of iterative update steps for each
agent and consequently of the price is used to converge
towards an equilibrium of the game. The exchange of informa-
tion by the agents, i.e., operation decisions and market prices
between the update steps is shown in Fig. 3.

Provided our proposed algorithm converges, no agent has an
incentive to deviate from its decision and the market clearing
conditions are satisfied. Hence, an equilibrium is reached.
Note that there is no guarantee on the uniqueness of the
found equilibrium. Whereas in our simulations the proposed
algorithm always converges to an equilibrium, the PATH
solver based on MCP reformulation can become instable. This
is due to the non-convexity introduced by endogenous risk
assessment of the agents as described in [9], [32].

The MCP reformulation of market equilibrium problems
is a well known approach for solving equilibrium problems.
It is for example applied in [9], [10], [12] or described in
details in [33]. By making use of the Karush-Kuhn-Tucker
(KKT) conditions, a set of complementarity conditions can be
derived. The combined set of complementarity constraints of
all agents and the market clearing conditions are solved as a
square system using dedicated state-of-the-art solvers, e.g. the
PATH solver [17].

B. ADMM-based approach for the equilibrium problem

In order to use the proposed ADMM-based algorithm for
computing an equilibrium, the KKT-conditions of the market
equilibrium are used for modifying the ADMM’s update steps.
The resulting optimality conditions of the update steps satisfy
the KKT-conditions of the market equilibrium. If the ADMM-
based algorithm converges using the same optimality condi-
tions, the obtained result can be interpreted as the coinciding
equilibrium. This transfer step from equilibrium problem to
the ADMM-based algorithm for distributed optimization is
ensured by the specification of the augmented Lagrangian L, ;,
L, .. It is adapted such that the the optimality conditions of
minimizing the unaugmented Lagrangian Ly ;, Lo . match the
equilibrium problem’s KKT-condition.

During the update step, the updated decision variables y**!
are obtained by minimizing the augmented Lagrangian. For
the optimal exchange with a sharing constraint as described
in Section III-A, the augmented Lagrangian function L, ; for
each agent is as follows at each iteration k+1, k € N*[18]:

X = argmin Ly i(xi, ) =
Xi€X;

fia, N+ Nooxa +p/2- i = (G =X )

1% penalty term

2 penalty term

The first penalty term is the multiplication of the sharing
constraint’s dual variable and the respective decision variable.
The second penalty term is an expression of the impact
of the decision variable on the remaining imbalance of the
sharing constraint weighted with a penalty factor p > 0. The
augmented Lagrangian L, ; in iteration k+1 given the prices
¥ is minimized using a quadratic solver.

When the optimum is reached, the second penalty term
becomes zero. To make sure that our proposed algorithm
converges to the same solution as we would expect from the
equilibrium problem, we ensure that the optimality conditions
of each agent’s update step are the same as the respective
KKT conditions of an MCP reformulation. Hence, we modify
the original agent’s objective function, II;, (2a) such that
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the optimality conditions of the unaugmented Lagrangian
Ly, Vi € N (6) coincide with the respective KKT conditions.
Analogously, this is done for the objective of the consumer c
(3a) and Lo,c3-

1) Agent update: For the agents’ update step, the unaug-
mented Lagrangian for the risk-averse generator looks as
follows:

S T
Logimn (G0 et R Y W et )
s=1 t=1

S T
P (W A
s=1 t=1

LA af, x) ©)

adapted 1%

s.t. constraints (2b)-(2g).

penalty term

The unaugmented Lagrangian, Ly ;, (6) can be read as the
investment cost and cost of generation (first row), the un-
changed CVaR; expression (second row), and the first penalty
term (third and fourth row). The penalty term represents the
revenues in the same way as they are part of the agents’ profit,
T, in the utility function (2a). Compared to the original
ADMM algorithm, the first penalty term is adapted. It is scaled
by the weighting ~y, the exogenous probabilities P for each
scenario and the weight W, ; of each time step. The modified
objective function represents the weighted () sum of expected
costs and the weighted CVaR;.

As a result, the optimality conditions of the update step
coincide with the KKT conditions of the equilibrium problem.
Consequently, an equilibrium found by our proposed algorithm
coincides with an equilibrium computed with the MCP re-
formulation®. As example, the optimality conditions resulting
from the unaugmented Lagrangian, Lo ;, (6) and the utility
function, II;, (2a) are compared for the offered energy, x?\s’t.
For readability, we assume that the constraints, (2b)-(2g), are
summarized by g(x;) > 0 and that p is the associated dual
variable. The optimality condition, (7), can be interpreted as
an expression for which prices, energy output (z7 ; , > 0) is
justified. In other words, a generator only offers energy, if,
for a time step ¢ in a scenario s, the energy price, A ,, at
least covers the variable costs, Cf. This is weighted with the
exogenous probability, P, and the endogenous valuation of
each scenario, i.e., the risk-adjusted probabilities, g; ;. They
describe each generator’s weighted valuation of each scenario
[8]. Formally, this yields the following comparison:

0< W i %ﬁ?
S0 War (7 Potais) - (CF = Xo0) +a ZZ(EXi)
Lat, 20, VieNsesSieT @

3The Lagrangian and full sets of KKT conditions for generators
and consumer are provided in an electronic appendix provided at
http://esat.kuleuven.be/~hhoschle/paper_admm/

2) Price update: The update of the prices is performed
based on the remaining imbalance in the respective market
clearing conditions found after each iteration k. As an exam-
ple, the price for energy, A§1’§+1, in the consecutive iteration,
k+1, is reduced if there is excess supply (275 ; ,+x¢ s, > D5 ),
and vice versa (8a). This is done accordingly for the capacity
market (8b), and the RES target (8c). The price update uses the
remaining imbalance and the regularization terms borrowed
from the ADMM. It is restricted by the penalty factor, p.

This update step emulates the utility function of the price-
setting agents. However, instead of obtaining the market prices
as result of the price setter’s optimization problem, the prices
are found borrowing the iterative update step. The formal
description of the price updatej:\; is as follows:

/\Z,’I?I — )\,69:]; —-p/2- (Z x:,s,t + mi,s,t - i,t), (8a)
i=1
N
c,k+1 __ ¢,k c c
)\S - )\S - p/2 . (Z xi,s + xc,s)u (Sb)
=1
N
)\r,k:+1 _ )\rﬁk r T T
s — s _p/2 (in,s+xc,s _Ds) (SC)

i=1
Experimentally, we found that a constant penalty factor p=1.1
provides reliable and stable convergence towards. A discussion
on the choice of penalty parameters can be found in [18].

3) Stopping criteria: The iterative process is controlled
by means of two stopping criteria. We introduce two stop-
ping criteria for the primal and dual residual, ¢ and 2.
The algorithm stops if the primal and dual stopping criteria
simultaneously come under a threshold e. The threshold e is
chosen based on the number of agents, scenarios and time
steps as described in [29]. Moreover, it is parameterized with
a parameter 7 to control the algorithm based on the desired
precision: € = 7 +/|A| - |S| - |T].

For each market clearing condition, the primal residual r
is the remaining imbalance for each market clearing condition
in each scenario and time step if applicable (9a)-(9c). In
case an equilibrium is obtained, the imbalances on all market
clearing conditions converge to zero.

Consequently, we define a primal stopping criterion )%*1
as the sum of the primal residuals normalized by an l5-norm
(9d). This approach follows Boyd et al. [18]:

k+1

N

rostt =Y a4l - DL Vs eSte T, (%)
i=1
N

roRHt :Z mi?’l — i Vs e S, (9b)
i=1
N

,,.2k+1 :Zx?,’?l + :c;’f?l _ D;,Vs €S, (9¢)
=1

k+1 Jk+1 Jk+1 Jk+1
P = 0 2 A S 2+ (1 e (9d)

For each decision variable of each agent that is part of a
market clearing condition, a dual residual s* is defined. It is
a measure for the change of the decision variable from the
previous iteration to the current iteration (10a)-(10c).

The change is defined as the difference between the decision
variable in iteration k£ and k+1. The change is corrected by the
average value of the decision variables for all agents. Hence,
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the residual is also linked to the change of the other agents.
This is valued with the penalty factor, p, in order to link the
change in decision variables to the change of prices. In case
an equilibrium is obtained, the agents do not have an incentive
to deviate. Consequently, the change of each decision variable
for all agent also converges zero.

Analogously to the primal stopping criteria, we define the
dual stopping criterion 1&’“*1 as the sum of the dual residuals
normalized by an ls-norm (10d).

—e,k e,k —e,k
- ‘rs,t+1) - (Cci,s,t - xs,t))a
Vie A,seS,teT, (10a)
SO =p((af T — T — (afF — 7)), Vi€ A, s € S(10b)

1,8 i,
P =p(@T =T = (@Rl -3 Vi€ As €5, (100)
e (vl PR [ Eral PR [ Ea [P (10d)

e,k+l (( e k+1
Si,s,t =p xi,s,t

1,8 1,8

We can show with our simulations for small problems
that if the PATH solver finds an equilibrium, our proposed
methodology yields the same result. However, the experiments
show that the PATH solver fails to return a solution for larger
problems in the risk-averse environment. This is also described
in [15]. In fact, the solving process is terminated after several
restarts by the solver returning an error. In contrast, the
proposed methodology reliably finds solutions for the given
set of experiments.

IV. CASE STUDY: IMPACT OF CAPACITY MECHANISMS ON
RISK-AVERSE INVESTORS

In this section, the application of the proposed methodology
is illustrated using a stylized case study. In the first part,
we benchmark the proposed algorithm with the classical
MCP reformulation. The comparison uses indicators such as
computation time, scalability and convergence®. In the second
part, we use the model to illustrate the mutual impact of a
capacity market and risk aversion based on changing installed
capacities and expected consumer cost.

A. Input data and scenarios

The case study compares two different market settings.
First, it includes a setting with only a market for energy
demand and RES certificates, in the remainder referred to as
the energy-only case. Second, we consider a market setting
that additionally includes a market for availability referred to
as capacity market which is modeled as described in Section II.

The differences in the scenarios, hence the uncertainty,
originate from the different underlying profiles for load, wind
and solar power. We use load, solar and wind (onshore) profiles
for 2013, 2014 and 2015 based on Belgian data [34]. The
scenarios are composed by combining the profiles to a total
of |S|=27 scenarios. For all model runs, each scenario has
equal probability P;=1/|S]. In order to test the scalability of
the algorithm, the number of scenarios is varied between 1 and
27. Respectively, the profiles and probabilities are adjusted.

4All computations are executed on an Intel i7 Quad Core at 2.7Ghz and
16GB RAM using Julia 0.5 including Complementarity and JuMP, and the
PATH 4.7 solver.

TABLE I
INPUT PARAMETERS PER TECHNOLOGY ¢ € A IN CASE STUDY

Type (04 Cinv R; CRY CR¢
i EN [€/MWh] [€/MW.year] [%/h] [-] [-]
Base 36 138000 50 0.0 1.0
Mid 53 82000 80 0.0 1.0
Peak 76 59000 100 0.0 1.0
PV 0 110000 - 1.0 0.0
Wind 0 76 500 - 1.0 0.0

For each scenario, 5 or 10 representative days with asso-
ciated weights are selected. The selection is based on [35]
and optimizes the representation of a full year with reduced
profiles. Each day is split into hourly time steps resulting in
a total of |7|=120 respectively 240 time steps. Within each
representative day, the weight of each hour is equal.

In both settings, the energy market has a price cap of
X '=3000€/MWh. The target for the RES certificates is set
to 20% of the total energy demand. In scenarios with a
capacity market, the target capacity price, A\&=0.5-Ci¥ . and
target capacity demand DY, equal to the peak demand of
the respective scenario, determines the demand curve. The
minimum and maximum capacity demand Qg,ﬁi are set
symmetrically at 97% and 103% of D¢ (Fig. 2).

The generators are grouped by technologies. Three con-
ventional (Base, Mid, Peak) and two renewable (PV, Wind)
technologies are introduced. Table I lists the economic (fixed
and variable cost) and technological (ramping) parameters of
the different technologies. The de-rating factors (C'R;, CR})
limits the participation in the markets for availability and RES
certificates for each technology, e.g. only renewables may offer
RES certificates.

All conventional resources are assumed to be risk-averse and
parameterized with the same 8 = 3;,Vi € N. A sensitivity
analysis on [ is executed in order to highlight the impact
of the risk aversion. The value of 3 varies between 1, i.e.
risk-neutral and 0, i.e. taking only the worst-case scenario
into account. In the case study, all generators have the same
risk aversion, although their risk exposure is different due
to different technical availability and proportion of fixed and
variable cost.

B. Convergence and computation time

A set of model runs both for a risk-neutral and risk-averse
setting is computed to compare the proposed methodology
and the existing PATH solver using an MCP reformulation.
Looking at the convergence behavior, Fig. 4 and Fig. 5
illustrate the behavior of the algorithm for a risk-averse case
of 27 scenarios.

Fig. 4a shows that the installed capacities for all technolo-
gies converge to a stable level already after relatively few
iterations. The remainder of the iterations, before the stopping
criteria are reached, are spent on reducing the imbalance to a
minimum by adapting prices (Fig. 4b).

A scaling of the balancing constraints can further improve
the convergence behavior. In this case study, the balancing
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Fig. 5. Primal v and dual stop criteria QZ for iteration k with stopping criteria
for 27 scenarios, 240 time steps (5 days) in the risk-averse setting.

constraint for the RES certificates is scaled due to the sum-
mation of the RES target over the time period. It is scaled
by 1/1752 based on 8760 hours and the RES target of 20%.
This scaling aligns all market clearing conditions to the same
magnitude and improves the price update step.

Fig. 5 shows the development of the norms for the primal
1 and dual v residuals over the iterations. The graph presents
the price adaptation process and the reaction of agents to
the updated prices leading to an oscillating convergence with
continuously decreasing amplitudes. The algorithm stops if
both curves are simultaneously below the threshold e.

Besides the fact that the algorithm reliably converges to a
solution, we also observe improvements in terms of computa-
tion time for larger case studies, i.e. including more scenarios
or representative days. Table II shows a comparison. For a
limited number of scenarios, the state-of-the-art PATH solver

TABLE 11
COMPARISON OF COMPUTATION TIME (IN MIN) FOR PATH AND PROPOSED
APPROACHED IN RISK-NEUTRAL (RN) AND RISK-AVERSE (RA) SETTINGS.

Number Scenarios 1 2 3 6 9 12 18 27
PATH 5d m 0.45 243 7.11 2503 5759 14.67 99.36  326.14
10d 1.14 690 21.89 1581 4227 119.74 367.87 *
5q m 2.66 2.84 2411 7.77 773 4074 1940 4798
Own ra 281 2926 1297 1400 1797 30.10 20.11 11893
approach log ™ 4.10 6.19 797 4393 5280 59.35 6156 110.27
ra 397 11.34  10.07 4816 53.65 71.03 6507 84.01

*: No solution, time limit reached after 720 min.

outperforms our implementation. The reduction in computa-
tion time with more scenarios is an expected outcome of a
decomposition algorithm. In fact, future work could include
further decomposition of the individual agent’s update step
based on the scenarios. The impact of risk-averse agents
compared to risk-neutral agents in terms of computation time
is minor.

C. Mutual impact of risk aversion and capacity mechanisms

Focusing on the model outcome of the case study, we can
point to the positive effect of capacity markets in a risk-
averse setting. We examine the impact of risk aversion on the
risk-adjusted expected cost and the installed capacities with
decreasing 3. As a reminder, we distinguish an energy-only
market (EOM) setting and a setting with a capacity market.

The risk-adjusted expected cost represents all costs accruing
to the consumer in the three markets plus the costs for EENS.
The EENS is valued with a moderate value-of-lost load of
3000€/MWh, which is equal to the price cap for energy. We
compare settings with and without a capacity market including
27 scenarios and 10 representative days. All objectives are
weighted with =0.5.

Assuming unchanged model parameters, e.g., load, variable
costs, etc., and that the capacity demand curve is parameterized
properly, we study the impact of different market parameters
that are commonly linked to the discussion of capacity mech-
anisms. We discuss our findings along the following three
changing market parameters:

1) Impact of market design: EOM or capacity market
2) Impact of increasing risk aversion in market
3) Impact of a higher price cap for the energy-based market

We support this discussion by using three figures (Fig. 6a,
6b, and 7). In all figures, the x-axis displays the assumed
level of risk aversion in the market reaching from risk-neutral
(B=1) to a very high level of risk aversion (5=0.1). The y-axis
shows the total (Fig. 7) and the relative (Fig. 6) risk-adjusted
expected cost (lines) and the change of the generation mix
(bars) relative to the risk-neutral case. For each generator, the
change in percentage is calculated based on the total installed
capacity and maximum EENS in the risk-neutral case. The
relative total installed capacities are depicted in the stacked
bars on the left.

1) Energy-only market or capacity market: Fig. 6 shows
the increasing expected consumer cost (dashed line) in a more
risk-averse context. With the given parameters for the capacity
demand curve, the capacity market shows a more beneficial
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Fig. 6. Installed capacity per generator with increasing risk aversion (decreasing 3) relative to the risk-neutral (8=1) scenario. The risk-adjusted expected
cost for consumers aggregates all expenses of the 3 combined markets plus the EENS, valued at 3000 €/MWh.
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Fig. 7. The effect of the energy-based price cap 2° on the risk-adjusted
expected cost under different levels of risk aversion. EENS is valued at
10000 €/MWh.

outcome for risk-averse markets. For the EOM (Fig. 6a) the
results show an increase in the EENS. Starting from a risk-
neutral case with EENS due to the price cap, the EENS further
increases, which can be explained by the overall decrease of
installed capacities. With a capacity market, EENS is avoided
for all levels of risk aversion (Fig. 6b). The investment signals
from the capacity market remain sufficient even if the market
participants become more risk-averse. This can be explained
by the additional revenue stream from a capacity market that
is available in all scenarios (while price spikes only occur in
some scenarios with scarcity). The impact of the difference in
scenarios is thus reduced and a more stable investment signal
is provided.

2) Impact of risk aversion: In the same line, the impact
of risk aversion on the risk-adjusted expected cost can be
analyzed. By comparing the dashed black and red lines in
Fig. 6 and Fig. 7, we conclude that a market with a capacity
market is more resilient to increased risk aversion than an
energy-only market. The cost increase with more risk aversion
has two origins. First, we observe a shift in the generation
mix from Base and Mid towards Peak leading to increasing
operating costs leading consequently to higher prices per
energy. It is Base and Mid capacity that leaves the market,
as their risk exposure is higher than for Peak because of the
underlying cost structure for fixed and variable costs. The

resulting gap is partly filled by the Peak generator. For the Peak
generator, we observe smaller changes, which can be explained
by the variation in the amount of hours and levels of scarcity
with increasing risk aversion. Depending on the reaction of the
competitive generators, it is favorable to increase the capacity.
The capacity of Wind is not affected by the risk aversion
despite the changing behavior of the other generators. This is
because the emission target is not affected and the prices A}
reach for all 5 a sufficient level. This also holds for the setting
of a capacity market.

For the capacity market (Fig. 6a), the total installed ca-
pacity does not decrease with increasing risk aversion. The
unchanged capacity demand curve leads to a full replacement
of the Base and Mid capacity by Peak capacity with lower
fixed costs. Note that the change for Base and Mid capacity
is nearly the same in both market settings. Thus, the capacity
market has no direct impact on decision of Base and Mid. The
cost difference is therefore linked to the difference in costs for
installing Peak capacity, which is used to a limited extent and
the costs associated with EENS. This forms additional cost
for the consumers. Already at a low level of risk-aversion, the
capacity market outperforms the EOM (Fig. 7). While risk
aversion in the case of an EOM increases the risk-adjusted
expected cost by up to 17.8%, with a capacity market the cost
increases is only 4.69% (Fig. 6).

3) Impact of a higher energy-based price cap: Often higher
price caps are argued to overcome the problem of inadequate
investments in an EOM. Fig. 7 shows the impact of different
price caps, X, given a risk-averse market context. In order
to compare the results, the EENS is valued uniformly at
10000€/MWh for all tested price cap levels. A low price cap
(Xe:300 €/MWh) leads to extremely high cost due to very
high volumes of EENS (cropped dotted line). On the other
extreme, a higher price cap does not have the same impact as
changing from an EOM to a capacity market. On the contrary,
once a sufficient higng)rice cap is set, e.g. 2'=3000€/MWh,
a further increase to A =10000€/MWh does not significantly
improve the situation in terms of risk-adjusted expected cost.
The reason is that in contrast to leveling revenues across
all scenarios in a capacity market, increased price caps only
affect outcomes with scarcity and high prices. In a risk-
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averse market, the market participants value those scenarios
lower. We conclude that for addressing investment signals
in a risk-averse market, capacity markets are better suited
than an increase of the price cap for energy. The positive
effect of a capacity market on risk-averse behavior through
providing stable revenues cannot be achieved by increasing
scarcity pricing of high residual demand.

V. CONCLUSION

Uncertainties about demand levels, revenues on electricity
markets, and market design create major risks for investment
decisions. Risk aversion in capital-intensive investment might
lead to inadequate investments and might undermine genera-
tion adequacy in the long-term. Electricity market models need
to capture the interaction of market design and risk aversion
in order to assess those effects.

Our paper contributes to the literature in two respects. First,
the proposed methodology based on ADMM in the context
of market equilibrium models with risk-averse generation
investment extends the current applications of ADMM. A
non-cooperative game is introduced incorporating markets for
energy output, RES certificates and availability. At the same
time, risk aversion is modeled by means of the Conditional
Value-at-Risk (CVaR) as the risk measure.

In this context, we show that our algorithm is suitable
for computing a risk-averse equilibrium of a non-cooperative
game under non-restrictive assumptions. The computed so-
lution coincides with the MCP reformulation. Additionally,
the algorithm reliably converges to a solution whereas the
solver based on an MCP reformulation fails to compute an
equilibrium for larger models with risk-averse agents. More-
over, the ADMM implicitly incorporates decomposition, which
decreases the computation time for larger case studies.

Consequently, the proposed methodology is not limited to
non-cooperative games in capacity expansion planning but
can also be applied to other equilibrium models, especially
including endogenous risk measures.

Second, the case study clearly indicates that incorporating
risk measures in the decision-making of investors in the con-
text of capacity mechanisms reveals important insights. The re-
sults show that with increasing risk aversion paired with higher
dependency on peak and scarcity pricing, capacity markets
yield lower total cost at even lower levels of expected energy
not served . The investment signals from the capacity market
remain sufficient even if the market participants become more
risk-averse. The positive effect of a capacity market on risk-
averse behavior through providing stable revenues cannot be
achieved by increasing the price cap in order to have scarcity
pricing of high residual demand.

The case study provides insights for a specific capacity
mechanism. We would like to highlight that the proposed
methodology enables the research of cases with more de-
tailed representation of capacity mechanisms as presented
in [5]. These case studies could provide more insights on
other changing market parameters. Because of the expected
increasing shares of RES, further research is necessary on the
participation of RES in capacity mechanisms and risk-averse

investment decision-making. Additionally, capacity mecha-
nisms introduced in a market zone will have implications for
interconnected market zones. An extension of the proposed
models towards multi-zonal market settings as presented in
[10] could provide valuable insights. These research questions
on capacity mechanisms combined with risk-averse behavior
are crucial in order to understand the impact of such a
complementary market mechanism.

The level of decomposition in the proposed algorithm can
be further enhanced by decomposing the individual agent’s
update step along the scenarios. This could be achieved by
using, e.g., progressive hedging [36]. Such a decomposition
could enable modelers to extend the number of scenarios or
to consider higher temporal resolution.

ACKNOWLEDGMENTS

Hanspeter Hoschle holds a PhD fellowship of the Research
Foundation - Flanders (FWO) and the Flemish Institute for
Technological Research (VITO). We would like to thank
the reviewers for their contributions to the methodology and
recommendations to improve the case study.

REFERENCES

[1] O. Tietjen, M. Pahle, and S. Fuss, “Investment risks in power
generation: A comparison of fossil fuel and renewable energy
dominated markets,” Energy Economics, vol. 58, pp. 174-185, Aug.
2016. [Online]. Available: http:/linkinghub.elsevier.com/retrieve/pii/
S0140988316301773

[2] P. Cramton, A. Ockenfels, and S. Stoft, “Capacity Market
Fundamentals,” Economics of Energy & Environmental Policy, vol. 2,
no. 2, 2013. [Online]. Available: http://www.iaee.org/en/publications/
eeeparticle.aspx?id=46

[31 L. J. De Vries and J. R. Ramirez Ospina, “European security of
electricity supply policy in the context of increasing volumes of
intermittent generation,” in 12" JAEE European Energy Conference
“Energy Challenge and Environmental Sustainability”, Venice, Italy, 9-
12-September 2012. 1AEE, 2012. [Online]. Available: http://repository.
tudelft.nl/view/ir/uuid:3a4631e0-4ae2-4001-9cd5-8225c¢8316ed1/

[4] G. Doorman, J. Barquin, L. Barroso, C. Batlle, A. Cruickshank,
C. Dervieux, K. De Vos, L. de Vries, R. Flanagan, J. Gilmore,
J. Greenhalg, H. Hoschle, P. Mastropietro, A. Keech, M. Krupa, J. Riesz,
B. LaRose, S. Schwenen, G. Thorpe, and J. Wright, Capacity mecha-
nisms: needs, solutions and state of affairs. Paris: CIGRE, 2016.

[5] H. Hoschle, C. De Jonghe, H. Le Cadre, and R. Belmans, “Electricity
markets for energy, flexibility and availability — Impact of capacity
mechanisms on the remuneration of generation technologies,” Energy
Economics, Jul. 2017. [Online]. Available: http:/linkinghub.elsevier.
com/retrieve/pii/S0140988317302189

[6] A. Shapiro, D. Dentcheva, and A. Ruszczynski, “Lectures on stochastic
programming: modeling and theory,” Technology, p. 447, 2009.

[71 S. Sarykalin, G. Serraino, and S. Uryasev, “Value-at-Risk vs.
Conditional Value-at-Risk in Risk Management and Optimization,” in
State-of-the-Art Decision-Making Tools in the Information-Intensive
Age, Sep. 2008. [Online]. Available: http://pubsonline.informs.org/doi/
abs/10.1287/educ.1080.0052

[8] R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-
at-risk,” Journal of risk, vol. 2, pp. 21-42, 2000. [Online]. Available:
http://www.pacca.info/public/files/docs/public/finance/Active %20Risk %
20Management/Uryasev%20Rockafellar- %200ptimization%20C VaR.
pdf

[9]1 A. Ehrenmann and Y. Smeers, “Generation Capacity Expansion in a
Risky Environment: A Stochastic Equilibrium Analysis,” Operations
Research, vol. 59, no. 6, pp. 1332—1346, Dec. 2011. [Online]. Available:
http://pubsonline.informs.org/doi/abs/10.1287/opre.1110.0992

[10] H. Hoschle, C. De Jonghe, D. Six, and R. Belmans, “Influence of Non-
Harmonized Capacity Mechanisms in an Interconnected Power System
on Generation Adequacy,” in Power Systems Computation Conference
(PSCC), 2016, Jun. 2016, pp. 1-11. [Online]. Available: http:
/lieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7540839


http://linkinghub.elsevier.com/retrieve/pii/S0140988316301773
http://linkinghub.elsevier.com/retrieve/pii/S0140988316301773
http://www.iaee.org/en/publications/eeeparticle.aspx?id=46
http://www.iaee.org/en/publications/eeeparticle.aspx?id=46
http://repository.tudelft.nl/view/ir/uuid:3a4631e0-4ae2-4001-9cd5-8225c8316ed1/
http://repository.tudelft.nl/view/ir/uuid:3a4631e0-4ae2-4001-9cd5-8225c8316ed1/
http://linkinghub.elsevier.com/retrieve/pii/S0140988317302189
http://linkinghub.elsevier.com/retrieve/pii/S0140988317302189
http://pubsonline.informs.org/doi/abs/10.1287/educ.1080.0052
http://pubsonline.informs.org/doi/abs/10.1287/educ.1080.0052
http://www.pacca.info/public/files/docs/public/finance/Active%20Risk%20Management/Uryasev%20Rockafellar-%20Optimization%20CVaR.pdf
http://www.pacca.info/public/files/docs/public/finance/Active%20Risk%20Management/Uryasev%20Rockafellar-%20Optimization%20CVaR.pdf
http://www.pacca.info/public/files/docs/public/finance/Active%20Risk%20Management/Uryasev%20Rockafellar-%20Optimization%20CVaR.pdf
http://pubsonline.informs.org/doi/abs/10.1287/opre.1110.0992
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7540839
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7540839

IEEE TRANSACTIONS ON POWER SYSTEMS

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

H. Hoschle, C. De Jonghe, D. Six, and R. Belmans, “Capacity
remuneration mechanisms and the transition to low-carbon power
systems.” IEEE, May 2015, pp. 1-5. [Online]. Available: http:
/lieeexplore.ieee.org/document/7216647/

0. Ozdemir, “Simulation modeling and optimization of competitive
electricity markets and stochastic fluid systems,” Ph.D. dissertation,
[CentER, Tilburg University], [Tilburg], 2013.

G. de Maere d’Aertrycke, A. Ehrenmann, and Y. Smeers, “Investment
with incomplete markets for risk: The need for long-term contracts,”
Energy Policy, no. June 2016, pp. 1-13, jan 2017. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0301421517300411

D. Ralph and Y. Smeers, “Risk Trading and Endogenous Probabilities
in Investment Equilibria,” SIAM Journal on Optimization, vol. 25,
no. 4, pp. 2589-2611, Jan. 2015. [Online]. Available: http://epubs.siam.
org/doi/10.1137/110851778

J. P. Luna, C. Sagastizdbal, and M. Solodov, “An approximation scheme
for a class of risk-averse stochastic equilibrium problems,” Mathematical
Programming, vol. 157, no. 2, pp. 451481, jun 2016. [Online].
Available: http://link.springer.com/10.1007/s10107-016-0988-4

H. Gérard, V. Leclere, and A. Philpott, “On risk
averse  competitive  equilibrium,” 2017. [Online].  Available:
https://hal-enpc.archives-ouvertes.fr/hal-01539997

S. P. Dirkse and M. C. Ferris, “The path solver: a
nommonotone stabilization scheme for mixed complementarity
problems,”  Optimization =~ Methods and  Software, vol. 5,
no. 2, pp. 123-156,  Jan. 1995. [Online].  Available:
http://www.tandfonline.com/doi/abs/10.1080/10556789508805606

S. Boyd, “Distributed Optimization and Statistical Learning via
the Alternating Direction Method of Multipliers,” Foundations and
Trends® in Machine Learning, vol. 3, no. 1, pp. 1-122, 2010. [Online].
Available: http://www.nowpublishers.com/article/Details/MAL-016

K. J. Arrow and G. Debreu, “Existence of equilibrium for a competitive
economy,” Econometrica, vol. 22, no. 3, pp. 265-290, 1954. [Online].
Available: http://www.jstor.org/stable/1907353?0origin=crossref

A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic
Therory, 1995.

G. De Maere D’Aertrycke and Y. Smeers, “Liquidity risks on power
exchanges: A generalized Nash equilibrium model,” Mathematical
Programming, vol. 140, no. 2, pp. 381-414, sep 2013. [Online].
Available: http://link.springer.com/10.1007/s10107-013-0694-4

R. B. Myerson, Game theory: analysis of conflict, 6th ed. Cambridge,
Mass.: Harvard Univ. Press, 2004, oCLC: 254510054.

M. J. Osborne and A. Rubinstein, A course in game theory. Cambridge,
Mass: MIT Press, 1994.

S. Dempe, V. Kalashnikov, G. A. Pérez-Valdés, and N. Kalashnykova,
Bilevel Programming Problems, ser. Energy Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015. [Online]. Available:
http://link.springer.com/10.1007/978-3-662-45827-3

P. T. Harker, “Generalized Nash games and quasi-variational
inequalities,”  European  Journal — of  Operational  Research,
vol. 54, no. 1, pp. 81-94, sep 1991. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/037722179190325P

H. Le Cadre, A. Papavasiliou, and Y. Smeers, “Wind farm portfolio
optimization under network capacity constraints,” European Journal of
Operational Research, vol. 247, no. 2, pp. 560-574, dec 2015. [Online].
Available: http://dx.doi.org/10.1016/j.ejor.2015.05.080http://linkinghub.
elsevier.com/retrieve/pii/S0377221715004920

D. Newbery, “Missing money and missing markets: Reliability, capacity
auctions and interconnectors,” Energy Policy, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0301421515301555

C. De Jonghe, B. F. Hobbs, and R. Belmans, “Optimal Generation
Mix With Short-Term Demand Response and Wind Penetration,”
IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 830-839,
May 2012. [Online]. Available: http://ieeexplore.ieee.org/Ipdocs/epic03/
wrapper.htm?arnumber=6126009

M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Dynamic
Network Energy Management via Proximal Message Passing,”
Foundations and Trends in Optimization, vol. 1, no. 2, pp. 70—
122, 2014. [Online]. Available: http://www.nowpublishers.com/articles/
foundations-and- trends- in-optimization/OPT-002

X. Cai, D. Han, and X. Yuan, “On the convergence of the direct
extension of ADMM for three-block separable convex minimization
models with one strongly convex function,” Computational Optimization
and Applications, vol. 66, no. 1, pp. 39-73, jan 2017. [Online].
Available: http://link.springer.com/10.1007/s10589-016-9860-y

[31] M. Hong and Z. Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” Mathematical Programming, vol. 162,
no. 1, pp. 1-35, 2016.

[32] S. A. Gabriel and Y. Smeers, “Complementarity Problems In Re-
structured Natural Gas Markets,” Lecture Notes in Economics and
Mathematical Systems, pp. 343-373, 2006.

[33] S. A. Gabriel, Ed., Complementarity modeling in energy markets, ser.
International series in operations research & management science. New
York: Springer, 2013, no. v. 180, oCLC: 0cn809636356.

[34] Elia, “Belgium Power Generation Data,” Jul. 2016. [Online]. Available:
http://www.elia.be/en/grid-data/power- generation

[35] K. Poncelet, H. Hoschle, E. Delarue, A. Virag, and W. D’haeseleer,
“Selecting representative days for capturing the implications of integrat-
ing intermittent renewables in generation expansion planning problems,”
IEEE Transactions on Power Systems, Jul. 2016.

[36] S. Takriti, J. Birge, and E. Long, “A stochastic model for
the unit commitment problem,” I[EEE Transactions on Power
Systems, vol. 11, no. 3, pp. 1497-1508, 1996. [Online]. Available:
http://ieeexplore.ieee.org/document/535691/

Hanspeter Hoschle received the Diplom degree
in industrial engineering and management in 2012
from the Karlsruhe Institute of Technology, Ger-
many. Since 2012, he has been working as a Ph.D.
researcher at the KU Leuven, Belgium, on power
system economics and the modeling of electric-
ity markets, in particular capacity mechanisms. He
holds a Ph.D. fellowship of the Research Foundation
- Flanders (FWO) and the Flemish Institute for
Technological Research (VITO).

Hélene Le Cadre holds a Magistére in mathemat-
ics from Ecole Normale Supérieure (ENS) Cachan
and Rennes 1 university, France. She graduated
from Mines-Télécom Atlantique, with a speciality in
applied mathematics and information science. She
received the Ph.D. degree in applied mathematics
from the same university. She worked as a research
fellow at Ecole des Mines de Paris (Mines Paris-
— Tech) and Ecole Nationale Supérieure des Tech-
- ¥ niques Avancées (ENSTA ParisTech), France. She
is currently working as a researcher at VITO /
EnergyVille, in Belgium. Her research interests include game theory, statistical
machine learning, performance analysis and operations research. She has
been involved in European projects (SmartNet, ELVIRE, ETICS) dealing
with applications of these techniques to the design of electricity markets and
communication networks, as well as in fundamental research projects (PGMO)
in operations research and optimization.

Yves Smeers is Professor Emeritus at Ecole Poly-
technique de Louvain, (Université catholique de
Louvain) and a researcher at the Center for Oper-
ations research and Econometrics of that University.
He spent his carrier in energy modelling, working
successively on global energy models, sector gas
and energy models and market simulation of the
restructured sectors. His current interest is on risk
averse stochastic equilibrium models for the analysis
of market design, coordination and investment. He
holds degrees in engineering and economics from
the universities of Liege and Louvain in Belgium and a MS in Industrial
Administration and a PhD in Operations Research from Carnegie Mellon.


http://ieeexplore.ieee.org/document/7216647/
http://ieeexplore.ieee.org/document/7216647/
http://linkinghub.elsevier.com/retrieve/pii/S0301421517300411
http://epubs.siam.org/doi/10.1137/110851778
http://epubs.siam.org/doi/10.1137/110851778
http://link.springer.com/10.1007/s10107-016-0988-4
https://hal-enpc.archives-ouvertes.fr/hal-01539997
http://www.tandfonline.com/doi/abs/10.1080/10556789508805606
http://www.nowpublishers.com/article/Details/MAL-016
http://www.jstor.org/stable/1907353?origin=crossref
http://link.springer.com/10.1007/s10107-013-0694-4
http://link.springer.com/10.1007/978-3-662-45827-3
http://linkinghub.elsevier.com/retrieve/pii/037722179190325P
http://dx.doi.org/10.1016/j.ejor.2015.05.080 http://linkinghub.elsevier.com/retrieve/pii/S0377221715004920
http://dx.doi.org/10.1016/j.ejor.2015.05.080 http://linkinghub.elsevier.com/retrieve/pii/S0377221715004920
http://www.sciencedirect.com/science/article/pii/S0301421515301555
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6126009
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6126009
http://www.nowpublishers.com/articles/foundations-and-trends-in-optimization/OPT-002
http://www.nowpublishers.com/articles/foundations-and-trends-in-optimization/OPT-002
http://link.springer.com/10.1007/s10589-016-9860-y
http://www.elia.be/en/grid-data/power-generation
http://ieeexplore.ieee.org/document/535691/

IEEE TRANSACTIONS ON POWER SYSTEMS

Anthony Papavasiliou (M’06) received the B.S.
degree in electrical and computer engineering from
the National Technical University of Athens, Greece,

= e and the Ph.D. degree from the Department of Indus-
i trial Engineering and Operations Research (IEOR)
‘V/ at the University of California at Berkeley, Berkeley,

CA, USA. He holds the ENGIE Chair at the Uni-
versité catholique de Louvain, Louvain-la-Neuve,
Belgium, and is a faculty member of the Center for
Operations Research and Econometrics. His research
is focused on power system operations, applications
of mathematical programming in energy systems, and energy policy. He has
held consulting and internship positions at the Belgian regulatory commission
of electricity and gas, N-SIDE, Pacific Gas and Electric, Quantil, Sun Run, the
United States Federal Energy Regulatory Commission, the Palo Alto Research
Center and the E3MLab of the National Technical University of Athens.

Ronnie Belmans (S’77-M’84-S’89-F’05) received
his MSc degree in electrical engineering in 1979
and a PhD degree in 1984, both from KU Leuven,
Belgium. In 1989 he added a Special Doctorate from
KU Leuven and in 1993 a ‘Habilitierung’, from
the RWTH, Aachen, Germany. Currently, Ronnie
Belmans is full professor at KU Leuven, teaching
techno-economical aspects of power systems, elec-
trical energy and regulatory affairs, among others.
His research interests include smart grids, security
of energy supply and the techno-economic aspects
of the liberalization of the electricity market. He is vice president of the
KU Leuven Energy Institute as well as co-founder and CEO of EnergyVille,
a research collaboration in Genk specializing in energy in smart cities and
buildings, in cooperation with VITO, imec and UHasselt. He is chairman of
the board of directors of the VREG, the Flemisch regulator for electricity &
gas markets and is honorary chairman of the board of directors of ELIA, the
Belgian transmission system operator.




	An ADMM-based Method for Computing Risk-Averse Equilibrium in Capacity Markets
	Nomenclature
	Sets
	Parameters
	Strategies of agents
	Auxiliary

	Introduction
	Risk aversion in capacity expansion models
	Contributions

	Capacity Expansion Planning as a non-cooperative game
	Solution concepts
	 Risk-averse generators using risk measure cVaR
	Consumer c
	Price-setting agent p

	Methodology
	ADMM to compute an equilibrium
	ADMM-based approach for the equilibrium problem
	Agent update
	Price update
	Stopping criteria


	Case Study: Impact of Capacity Mechanisms on Risk-averse Investors
	Input data and scenarios
	Convergence and computation time
	Mutual impact of risk aversion and capacity mechanisms
	Energy-only market or capacity market
	Impact of risk aversion
	Impact of a higher energy-based price cap


	Conclusion
	Acknowledgments
	References
	Biographies
	Hanspeter Höschle
	Hélène Le Cadre
	Yves Smeers
	Anthony Papavasiliou
	Ronnie Belmans



