
INI Workshop 2019 1

Transmission capacity allocation in zonal electricity markets

Anthony Papavasiliou (UC Louvain)
Collaborators: Ignacio Aravena (LLNL), Yves Smeers (UC Louvain)

Workshop on Flexible Operation and

Advanced Control for Energy Systems,

Isaac Newton Institute for Mathematical Sciences,

University of Cambridge. January 7th-11th, 2019.



Outline

INI Workshop 2019 2

1. Introduction

2. Day-ahead zonal electricity market models

3. Policy analysis using 4-node, 3-zone network

4. Cutting-plane algorithms for robust day-ahead zonal electricity
markets

5. Simulation results for the Central Western European network

6. Conclusions



Introduction

⊲ Introduction

Day-ahead electricity

market models

Cutting-plane

algorithms for robust

day-ahead electricity

markets

Simulation results

for the Central

Western European

network

Conclusions

Appendix

INI Workshop 2019 3



Zonal electricity markets
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� European electricity market organized as a zonal market, EC
714/2009

� Two types of export/import limits:

– Limits on the bilateral exchange between neighbouring zones,
Available-Transfer-Capacity Market Coupling (ATCMC)

– Limits on the net position configuration of zones, Flow-Based
Market Coupling (FBMC)

� Both methodologies should be N-1 robust (Critical
Branches/Critical Outages), Amprion et al. (2017)

� FBMC used to clear day-ahead electricity market at the Central
Western European system since May 2015

� Other markets might implement FBMC in the near future (e.g.
Nord Pool, Energinet et al. (2017))



Flow-Based Market Coupling (FBMC)
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� Preferred methodology for electricity market operations of the
EC, EU 2015/1222: “... a method that takes into account that
electricity can flow via different paths and optimizes the
available capacity in highly interdependent grids ...”

� Increases in day-ahead market welfare of 95Me/year with
respect to ATCMC, Amprion et al. (2013)

� Congestion management and balancing costs not included in
studies. They amounted to 945Me in 2015, ENTSO-E (2015).

� Questions:

– Do FBMC or ATCMC correctly account for physical flows?
Why do they/do they not?

– Does FBMC significantly improve the overall welfare of the
market with respect to ATCMC?
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� Jensen et al. (2017), and many references therein, study ATCMC
and conclude that its performance is significantly worse than
that of a nodal market

� Waniek et al. (2009), Waniek et al. (2010) study the accuracy of
the approximation of flows in FBMC at cross-border lines

� Marien et al. (2013) study how discretionary aggregation
parameters (for export/import limits) affect the outcome of
FBMC

� Van den Bergh et al. (2015) summarize the concepts and
methodology used for FBMC at the Central Western European
system

� Dierstein (2017) analyzes the impacts of discretionary
aggregation parameters on welfare, exchanges, prices and
counter-trading costs
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1. We propose a new framework for modelling ATCMC and FBMC
in which we derive export/import limitations directly from the
physics of the real network.

(the proposed models do not depend on discretionary
aggregation parameters)

2. We present cutting-plane algorithms to systematically account
for the N-1 security criterion on day-ahead markets.

3. We perform numerical simulations using an industrial-scale
instance of the Central Western European system considering
100 years of operating conditions.

� Vast similarities between ATCMC and FBMC in all aspects.

� Zonal market designs fail at allocating transmission capacity
and are outperformed by a nodal market.
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Assumptions
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1. All energy trades take place at the day-ahead auction

2. Bids are price-quantity pairs, associated with a node/zone

3. Participants bid truthfully

4. System operator knows:

� Topology of the network

� Susceptance and thermal limits of lines

� Installed production capacity at each node

5. Consumers have an infinite valuation (only for simplicity)



Nodal electricity market
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min
bids,
flows

production cost

s.t. fractional bids

net production =

outgoing flows, at each node

line thermal limits

power-angle constraints

n1

n2

n3

n4

l12

l23

l34

l41

B



Nodal electricity market
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min
v,f,θ

∑

g∈G

PgQgvg

s.t. 0 ≤ vg ≤ 1 ∀g ∈ G
∑

g∈G(n)

Qgvg −Qn =

∑

l∈L(n,·)

fl −
∑

l∈L(·,n)

fl ∀n ∈ N [ρn]

− Fl ≤ fl ≤ Fl ∀l ∈ L

fl = Bl

(

θm(l) − θn(l)
)

∀l ∈ L

P,Q: price and quantity

Fl, Bl: capacity and susceptance line l

n1

n2

n3

n4

l12

l23

l34

l41

B

G = {1, 2, 3, 4},

G(n1) = {1}, . . .

N = {n1, n2, n3, n4}

L = {l12, l23, l34, l41},

L(n1, n2) = {l12}, . . .



Zonal network organization
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n1

n2

n3

n4

l12

l23

l34

l41A

B

C

G = {1, 2, 3, 4}, G(A) = {1, 2}, . . .

N = {n1, n2, n3, n4}, N(A) = {n1, n2}, . . .
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1. Select a base case (p0, f0) (net
positions, flows on branches)

f0
l12

f0
l23

f0
l34

f0
l41

p0A
∆pA

∆pB
p0B

p0C
∆pC
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1. Select a base case (p0, f0) (net
positions, flows on branches)

2. Compute zone-to-line Power-
Transfer-Distribution-Factors,
PTDFl,z, so that

∆fl ≈
∑

z∈Z

PTDFl,z∆pz
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1. Select a base case (p0, f0) (net
positions, flows on branches)

2. Compute zone-to-line Power-
Transfer-Distribution-Factors,
PTDFl,z, so that

∆fl ≈
∑

z∈Z

PTDFl,z∆pz

3. Define flow-based domain:

PFB−A :=

{

p ∈ R
|Z|

∣

∣

∣

∣

∑

z∈Z

pz = 0,

f0
l12

∆fl12

f0
l23

∆fl23

f0
l34

∆fl34

f0
l41

∆fl34

p0A
∆pA

∆pB
p0B

p0C
∆pC

−Fl ≤
∑

z∈Z

PTDFl,z(pz − p0z) + f0
l ≤ Fl ∀l ∈ L

}



Flow-Based Market Coupling with Approximation (FBMC-A)
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4. Clear day-ahead market by solving:

min
v,p

∑

g∈G

PgQgvg

s.t. 0 ≤ vg ≤ 1 ∀g ∈ G
∑

g∈G(z)

Qgvg −
∑

n∈N(z)

Qn = pz ∀z ∈ Z [ρz]

∑

z∈Z

pz = 0

− Fl ≤
∑

z∈Z

PTDFl,z(pz − p0z) + f0
l ≤ Fl ∀l ∈ L

� Circular definitions: base case (p0, f0), market clearing point

� Discretionary parameters: zone-to-line PTDF (among others)
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min
v,p

∑

g∈G

PgQgvg

s.t. 0 ≤ vg ≤ 1 ∀g ∈ G
∑

g∈G(z)

Qgvg −
∑

n∈N(z)

Qn =

pz ∀z ∈ Z [ρz]

p ∈ P

� P should include all feasible
cross-border trades, EC 714/2009,
Annex I, Art. 1.1

� P should not include configurations
that can harm security, EC 714/2009,
Annex I, Art. 1.7

n1

n2

n3

n4

l12

l23

l34

l41A

B

C

G = {1, 2, 3, 4},

G(A) = {1, 2}, . . .

N = {n1, n2, n3, n4},

N(A) = {n1, n2}, . . .



Deriving P directly from physics: an example
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Physics:

r1 + r2 + r3 = 0

−100 ≤ r1 ≤ 100

−100 ≤ r2 ≤ 100

−100 ≤ r3 ≤ −50

−25 ≤ f12 = 1/3 r1 − 1/3 r2 ≤ 25

Zonal net positions:

pA = r1

pB = r2 + r3

n1

n2

n3

l12

l23

l31

A B

G = {1, 2, 3}

Q1 = 200, Q2 = 200, Q3 = 50

N = {n1, n2, n3}

L = {l12, l23, l31}, F12 = 25

100MW demand per node
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Physics:

r1 + r2 + r3 = 0

−100 ≤ r1 ≤ 100

−100 ≤ r2 ≤ 100

−100 ≤ r3 ≤ −50

−25 ≤ f12 = 1/3 r1 − 1/3 r2 ≤ 25

Zonal net positions:

pA = r1

pB = r2 + r3

Are these zonal net positions
feasible?

pA = 0 pB = 0 Yes

pA = 200 pB = −200 No

pA = −100 pB = 100 No

pA = 50 pB = −50 Yes

True net position feasible set P:

pA + pB = 0

−12.5 ≤ pA ≤ 87.5
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space of nodal injections → space of zonal net positions

R :=
{

r ∈ R
|N |

∣

∣ r is feasible

for the real network
}

4-node, 3-zone network: pA = r1 + r2, pB = r3, pC = r4
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space of nodal injections → space of zonal net positions

R :=
{

r ∈ R
|N |

∣

∣ r is feasible

for the real network
}

PFB−EP :=
{

p ∈ R
|Z|

∣

∣ ∃r ∈ R :

pz =
∑

n∈N(z)

rn ∀z ∈ Z
}

4-node, 3-zone network: pA = r1 + r2, pB = r3, pC = r4



Flow-Based Market Coupling with Exact Projection (FBMC-EP)
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PFB−EP =

{

p ∈ R
|Z|

∣

∣

∣

∣

∃(v̄, f , θ) ∈ [0, 1]|G| × R
|L| × R

|N | :

∑

g∈G(z)

Qg v̄g − pz =
∑

n∈N(z)

Qn ∀z ∈ Z,

∑

g∈G(n)

Qg v̄g −
∑

l∈L(n,·)

fl +
∑

l∈L(·,n)

fl = Qn ∀n ∈ N,

− Fl ≤ fl ≤ Fl, fl = Bl

(

θm(l) − θn(l)
)

∀l ∈ L

}

� PFB−EP allows for all trades that are feasible with respect to
the real network and bans only trades that can be proven to
be infeasible for the real network

� PFB−A provides no guarantees: might ban feasible trades and,
also, allow infeasible trades



Available-Transfer-Capacity Market Coupling (ATCMC)
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net positions of zones Z
flow on interconnectors

between zones T

n1

n2

n3

n4

l12

l23

l34

l41A

B

C

→

tAB

tBC

tCA
A

B

C

� ATCMC clears day-ahead market over the network G(Z, T )

� Available-transfer-capacities (ATCs): ATC−
t ≤ et ≤ ATC+

t

� How to compute ATCs?



Available-Transfer-Capacity Market Coupling (ATCMC)
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space of zonal net
positions

→ space of exchanges

PFB−EP



Available-Transfer-Capacity Market Coupling (ATCMC)
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space of zonal net
positions

→ space of exchanges

PFB−EP

E :=

{

e ∈ R
|T |

∣

∣

∣

∣

−
∑

l∈L(t)

Fl ≤ et ≤
∑

l∈L(t)

Fl ∀t ∈ T,

∃p ∈ P : pz =
∑

t∈T (z,·)

et −
∑

t∈T (·,z)

et ∀z ∈ Z

}



Maximum-volume Available-Transfer-Capacities (ATCs)
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� ATC limits, ATC−
t ≤ et ≤ ATC+

t ∀t ∈ T , are a box in the space
of exchanges

� Compute ATCs as a maximum volume box inside E ,

max
ATC

∏

t∈T

(ATC−
t +ATC+

t )

s.t. [−ATC−, ATC+] ⊆ E

� EATC := [−ATC−,∗, ATC+,∗] allows for the largest subset of
bilateral exchanges that can be accommodated using a box and
it bans all trades that would result in infeasible zonal net
positions

� Implemented methodology for computing ATCs provides no
guarantees
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space of zonal net
positions

space of exchanges

P

→

E
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space of zonal net
positions

space of exchanges

P

→

E , EATC = [−ATC−,∗, ATC+,∗]
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space of zonal net
positions

space of exchanges

P

→
←

PATC :=

{

p ∈ R
|Z|

∣

∣

∣

∣

∃e ∈ EATC :

pz =
∑

t∈T (z,·)

et −
∑

t∈T (·,z)

et ∀z ∈ Z

}

E , EATC = [−ATC−,∗, ATC+,∗]
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Recap: 4 policies
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� LMP: Minimizes cost over nodal model

� FBMC-A: Minimizes cost over zonal model with P = PFB−A

� FBMC-EP: Minimizes cost over zonal model with P = PFB−EP

� ATCMC: Minimizes cost over zonal model with P = PATC



Inter-zonal congestion case study
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n1

n2

n3

n4

l12

l23

l34

l41
A

B

C

Bl = 1pu ∀l ∈ L

Generators

g n(g)
Qg Pg

[MW] [$/MWh]

1 n1 500 8
2 n2 200 45
3 n3 300 18
4 n4 500 200

Consumers

n
Qn

[MW]

n2 300
n4 300

Fl41 = 100MW, Fl = +∞ ∀l ∈ L \ {l41}
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INI Workshop 2019 27

Summary of clearing quantities and prices for a case of inter-zonal
congestion (l41 limited to 100MW)

Policy
Total

ρ [$/MWh]
Abs. error Overload

cost [$] flow approx. [MW] l41 [MW]
LMP 15 200 (8, 45, 82, 119) 0 0
FBMC-A 7 217 (8, 18, 200) 475 79
FBMC-EP 7 800 (8, 18, 23) 300 50
ATCMC 23 208 (8, 18, 200) – 50

� Cleared quantities on all zonal markets overload line l41: failure
to account for inter-zonal congestion

� Flow approximation error and overload larger in FBMC-A than in
FBMC-EP

� Cost of ATCMC larger than cost of LMP, ATCMC clears at an
infeasible point
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Intra-zonal congestion case study
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n1

n2

n3

n4

l12

l23

l34

l41
A

B

C

Bl = 1pu ∀l ∈ L

Generators

g n(g)
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n
Qn

[MW]
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Summary of clearing quantities and prices for a case of intra-zonal
congestion (l12 limited to 100MW)

Policy
Total

ρ [$/MWh]
Abs. error Overload

cost [$] flow approx. [MW] l12 [MW]
LMP 10 267 (8, 45, 32.7, 20.3) 0 0
FBMC-A 5 800 (18, 18, 200) 536 150
FBMC-EP 5 800 (18, 18, 18) 300 150
ATCMC 9 750 (8, 18, 200) – 108

� Cleared quantities on all zonal markets overload line l12: failure
to account for intra-zonal congestion

� Flow approximation error larger in FBMC-A than in FBMC-EP
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� FBMC-A, FBMC-EP, ATCMC led to clearing quantities that
would overload the transmission system

� FBMC-A can be cleared with infeasible net positions and can
prevent feasible trades from being accepted

In direct conflict with EC 714/2009, Annex I, Art. 1.1 and 1.7

� All zonal market designs suffer the same problem for inter-
and intra-zonal transmission capacity allocation: losing track of
nodal injections leads to inaccurate physical flow estimations

� Given these results, in what follows, we only use FBMC-EP for
modelling flow-based market coupling
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� Nodal net injections, rn =
∑

g∈G(n)Qgvg −Qn, should be
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Nodal day-ahead market clearing problem with N-1 security
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min
v,r

∑

g∈G

PgQgvg

s.t. 0 ≤ vg ≤ 1 ∀g ∈ G
∑

g∈G(n)

Qgvg −Qn = rn ∀n ∈ N [ρn]

r ∈ RN−1

where RN−1 = ∩
u∈{0,1}|L|

‖u‖1≤1

R(u) and

R(u) =

{

r ∈ R
|N |

∣

∣

∣

∣

∃(f, θ) ∈ R
|L| × R

|N | :

rn =
∑

l∈L(n,·)

fl −
∑

l∈L(·,n)

fl ∀n ∈ N,

− Fl ≤ fl ≤ Fl, fl = Bl(1− ul)
(

θm(l) − θn(l)
)

∀l ∈ L

}



Cutting-plane algorithm for FBMC under N-1 security

INI Workshop 2019 36

� RN−1 is a convex polytope → we can describe it as V r ≤W ,
for certain V ∈ R

M×|N | and W ∈ R
|N |

� MCO(V,W ) (Market Clearing Oracle): Clears day-ahead nodal
market using V r ≤W as a description of RN−1

� IO(r) (Injection Oracle): Checks if r ∈ RN−1, returning a
separating hyperplane v⊤r ≤ w if r /∈ RN−1

1: Initialize V := 01,|N |,W := 0, inclusion := FALSE

2: while !inclusion do
3: Call MCO(V,W )→ r
4: Call IO(r)→ inclusion, (v, w)
5: V := [V ⊤ v]⊤, W := [W⊤ w]⊤

6: end while
7: Terminate: inner model of MCO(V,W ) gives the optimal

clearing.



Injection oracle (IO)
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� Recall RN−1 = ∩u∈{0,1}|L|

‖u‖1≤1

R(u)

� Generating Benders’ cuts independently for every u ∈ {0, 1}|L|,
‖u‖1 ≤ 1 can be very expensive

� A better approach: use a distance function d between the query
point r and the set RN−1

d(r,RN−1) := max
u∈{0,1}|L|

‖u‖1≤1

min
r̄∈R(u)

‖r − r̄‖1

which can be evaluated by solving a single-level MILP

� Cutting-plane algorithm converges finitely

� Algorithm inspired by original work by Street et al. (2014) on
security constrained unit commitment
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� Zonal net positions should be feasible even if a single
transmission element is not available

min
v,p

∑

g∈G

PgQgvg

s.t. 0 ≤ vg ≤ 1 ∀g ∈ G
∑

g∈G(z)

Qgvg −
∑

n∈N(z)

Qn = pz ∀z ∈ Z [ρz]

p ∈ P

� FBMC: P ≡ PFB−EP
N−1 := {p ∈ R

|Z| | there exists a feasible
(v̄, f , θ) for each single-element unavailability scenario}

� ATCMC: P ≡ projection of ATC box, computed as
maximum-volume box inside EN−1 (defined in an analogous
fashion to E)
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� Define PFB−EP
N−1 := ∩u∈{0,1}|L|

‖u‖1≤1

PFB−EP (u), where

PFB−EP (u) =

{

p ∈ R
|Z|

∣

∣

∣

∣

∃(v̄, f , θ) ∈ [0, 1]|G| × R
|N | × R

|L| :

∑

g∈G(z)

Qg v̄g −
∑

n∈N(z)

Qn = pz ∀z ∈ Z,

∑

i∈G(n)

Qg v̄g −Qn =
∑

l∈L(n,·)

fl −
∑

l∈L(·,n)

fl ∀n ∈ N,

− Fl ≤ fl ≤ Fl, fl = Bl(1− ul)
(

θm(l) − θn(l)
)

∀l ∈ L

}

� PFB−EP
N−1 is a convex polytope → we can clear FBMC using an

analogous cutting-plane approach to that used for LMP

� Computing max-volume ATCs: similar approach, but separating
hyperplanes guarantee box inclusion instead of point inclusion
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Two-settlement system
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Day-ahead
electricity market

forecast renewable energy infeed

day-ahead energy prices
day-ahead cleared energy quantities

day-ahead congestion rent
reserve prices

cleared reserve quantities

Real-time elec-
tricity market

renewable energy infeed
generation and transmission outages

real-time cleared energy quantities
real-time energy prices

real-time congestion rent
real-time redispatch and

congestion management cost

day-ahead commitment
day-ahead net positions

day-ahead cleared
energy quantities

� Commitment refers to {0, 1} (on-off) decisions → European rules for
integer pricing, Madani and Van Vyve (2015)



Central Western European network
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France

Belgium

Netherlands

Germany

Austria

*

France

Belgium Germany
Austria

Luxembourg

Netherlands

� 632 buses, 945 branches (3 491 individual circuits), 346 slow
thermal generators (154GW), 301 fast thermal generators
(89GW) and 1 312 renewable generators (149GW)

� 768 typical snapshots × 1 150 random uncertainty realizations →
∼100 years of operation
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� Implementation in Julia/JuMP, using Gurobi, Ipopt compiled
with HSL and Xpress as mathematical programming solvers

� High-performance computing (HPC) deployment using Julia’s
built-in parallel computing capabilities

� Total simulation time: ∼7 579 CPU-hours

Cab

Lawrence Livermore National

Laboratory

Lemaitre3

Consortium des Équipements de

Calcul Intensif
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Total costs and efficiency of different policies

Policy
Day-ahead Real-time Total Efficiency
[Me/year] [Me/year] [Me/year] losses

PF – 11 476 11 476 -2.90%
LMP 11 284 534 11 818 –
FBMC 10 458 1 963 12 420 5.09%
ATCMC 10 470 1 949 12 419 5.08%

� PF: Perfect Foresight benchmark

� LMP schedules out-of-merit production to meet N-1 security,
leading to inefficiencies with respect to PF

� Efficiency losses of zonal markets with respect to LMP amount to
about 5.1% of total costs, ∼600Me/year

� FBMC and ATCMC do not present a significant difference
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Day-ahead costs

0 2 4 6 8 10 12

LMP

FBMC

ATCMC

Cost [109e/year]

Real-time costs

−0.5 0 0.5 1 1.5 2

LMP

FBMC

ATCMC

Cost [109e/year]

Production slow Production fast CO2 emissions Curtailment

� Day-ahead costs larger for LMP, real-time costs much larger for
FBMC and ATCMC than LMP

� Zonal policies: re-dispatching slow (cheap) generators down and
re-dispatching fast (expensive) generators up in real time



CWE results: production schedules and line overloading

INI Workshop 2019 46

Production schedule

comparison

L
M

P
 v

s

F
B

M
C

L
M

P
 v

s

A
T

C
M

C

F
B

M
C

 v
s

A
T

C
M

C

0

5

10

15

20

25

30

L
1

 d
if
fe

re
n

c
e

 o
n

 n
o

d
a

l 
p

ro
d

u
c
ti
o

n
 [

G
W

]
Line overloading

day-ahead schedule

FBMC

D
E

/A
T

/L
X

B
E

/F
R

/N
L

C
ro

s
s

�

b
o

rd
e

r

0

5

10

15

T
o

ta
l 
lin

e
 o

v
e

rl
o

a
d

 [
G

W
]

Line overloading

day-ahead schedule

ATCMC

D
E

/A
T

/L
X

B
E

/F
R

/N
L

C
ro

s
s
−

b
o

rd
e

r

0

5

10

15

T
o

ta
l 
lin

e
 o

v
e

rl
o

a
d

 [
G

W
]

� Large differences between day-ahead schedules of nodal and zonal
policies, small differences between FBMC and ATCMC

� Zonal policies lead to decisions overloading inter- and intra-zonal
transmission lines
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Price change in FBMC at nodes where UCFBMC 6= UCLMP
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Exclusive LMP

Exclusive FBMC

� “Exclusive LMP”: weighted average change ρRT
n − ρDA

z(n) over all nodes
where LMP committed slow units and FBMC did not commit units.
“Exclusive FBMC” series computed analogously.

� LMP commits capacity where it is needed. FBMC suffers from
suboptimal commitment.
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� New framework for modelling zonal electricity markets:

– Projecting network constraints onto space of exports/imports

– Free from discretionary parameters (base case, flow
approximation, etc.)

� ATCMC and FBMC fail at allocating inter- and intra-zonal
transmission capacity

� CWE: ATCMC and FBMC do not present significant
performance differences

� CWE: Nodal design outperforms ATCMC and FBMC by
∼600Me/year
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Thank you

Contact:

Anthony Papavasiliou, anthony.papavasiliou@uclouvain.be
http://perso.uclouvain.be/anthony.papavasiliou/

Ignacio Aravena, aravenasolis1@llnl.gov
http://sites.google.com/site/iaravenasolis/

Yves Smeers, yves.smeers@uclouvain.be
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Future extensions
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� Application of the developed framework to answer policy
questions in European electricty markets via simulation

� Extensions of the proposed framework:

– Pricing AC power flow constraints implicitly on active power

– TSO-DSO coordination
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n1

n2

n3

n4

l12fl12

l23

fl23

l34 fl34

l41

fl41

rn1

rn2

rn3

rn4

� Paths are decision variables

� Must respect nodal balance
constraints (∀n ∈ N)

rn =
∑

l∈L(n,·)

fl −
∑

l∈L(·,n)

fl

� Must respect capacities of
branches (∀l ∈ L):

−Fl ≤ fl ≤ Fl

� Note:
∑

n∈N rn = 0
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� Paths are decision variables

� Must respect nodal balance
constraints (∀n ∈ N)

rn =
∑

l∈L(n,·)

fl −
∑

l∈L(·,n)

fl

� Must respect capacities of
branches (∀l ∈ L):

−Fl ≤ fl ≤ Fl

� Note:
∑

n∈N rn = 0
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n1

θn1

θn2

n2

θn3

n3

n4

θn4

l12fl12

l23

fl23

l34 fl34

l41

fl41

rn1

rn2

rn3

rn4

� Flow paths are implied by
injections

� Must respect nodal balance
constraints (∀n ∈ N)

rn =
∑

l∈L(n,·)

fl −
∑

l∈L(·,n)

fl

� Must respect capacities of
branches (∀l ∈ L):

−Fl ≤ fl ≤ Fl

� Must respect power-angle
constraints (∀l ∈ L, branch l
from m(l) to n(l)):

fl = Bl

(

θm(l) − θn(l)
)
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� Must respect capacities of
branches (∀l ∈ L):

−Fl ≤ fl ≤ Fl

� Must respect power-angle
constraints (∀l ∈ L, branch l
from m(l) to n(l)):

fl = Bl

(

θm(l) − θn(l)
)
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n1

n2

n3

n4

l12

l23

l34

l41

B � Participants can trade
freely when located at the
same node

� Participants in different
nodes can trade up to
congestion of lines

� Congestion: power flow
equations, thermal limits of
transmission lines, among
others (physics)
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n1

n2

n3

n4

l12

l23

l34

l41A

B

C

� Participants trade freely
within each bidding zone

� Participants in different
zones can trade up to
certain export/import
limits

� Limits: aggregation of
power flow equations and
others
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