Integration of Contracted Renewable Energy and Spot Market Supply to Serve Flexible Loads INFORMS 2011

Anthony Papavasiliou, Shmuel S. Oren

November 13th, 2011

(日)

프 > 프

Outline

Introduction

2

Flexible Demand

- Centralized Load Dispatch
- Demand Bids
- Coupling

3 Results

イロト イポト イヨト イヨト

э

Load Flexibility

3 fundamental approaches to deal with renewable energy variability via demand response

- Centralized co-optimization of dispatchable supply resources and flexible loads by system operator
- Price response:
 - Renewable producers bid in centralized real-time market
 - Consumers can communicate with system through instantaneous response to price
- Oupling aggregated load with renewables:
 - Flexible loads communicate basic needs to renewable suppliers
 - Flexible loads follow dynamic supply signal from renewable resources, system operator faces reduced variability

ヘロト ヘアト ヘヨト

Research Objective

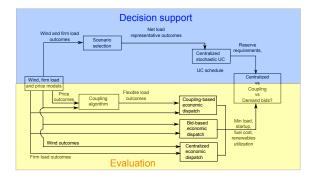
Want to quantify:

- Renewable energy utilization
- Cost of unit commitment and economic dispatch
- Capital investment in generation capacity

Stochastic unit commitment an appropriate model:

- Quantifies renewable energy utilization (decision variable)
- Quantifies operating costs (objective function)
- Endogenously determines reserves (as opposed to ad hoc rules)

ヘロト ヘアト ヘビト ヘビト


э

Two-Stage Stochastic Unit Commitment

- In the first stage we commit slow generators: u_{gst} = w_{gt}, v_{gst} = z_{gt}, g ∈ G_s, s ∈ S, t ∈ T (corresponds to day-ahead market)
- Our Content of the second s
- Second stage decisions: u_{gst}, g ∈ G_f and p_{gst}, g ∈ G_f ∪ G_s (corresponds to real-time market)
- Objective:

$$\min \sum_{g \in G} \sum_{s \in S} \sum_{t \in T} \pi_s (K_g u_{gst} + S_g v_{gst} + C_g p_{gst})$$

Integrating Demand Response in Stochastic Unit Commitment

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Centralized Load Dispatch Demand Bids Coupling

Centralized Load Dispatch

- Stochastic unit commitment with demand satisfaction constraint: $\sum_{t=1}^{N} p_{gst} = R$
- Assumptions of centralized load control:
 - Central co-optimization of generation and demand (computationally prohibitive)
 - Perfect monitoring and control of demand
- Centralized load control represents an idealization that can be used for:
 - Quantifying the cost of decentralizing demand response

イロト イポト イヨト イヨト

• Estimating the capacity savings of deferrable demand

Centralized Load Dispatch Demand Bids Coupling

Demand Bids

- Based on retail consumer model of (Borenstein and Holland, 2005), (Joskow and Tirole, 2005), (Joskow and Tirole, 2006)
- State contingent demand functions used in economic dispatch D_t(λ_t; ω) = a_t(ω) − αbλ^R − (1 − α)bλ_t
- Note that the demand function model has to:
 - Be comparable to the deferrable demand model in terms of total demand *R*

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

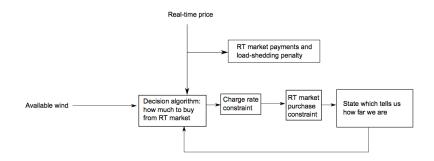
Be consistent with the observed inflexible demand in the system

Centralized Load Dispatch Demand Bids Coupling

ヘロン 人間 とくほど くほとう

э

Implementation of Coupling

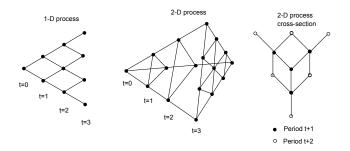

- Match renewable power suppliers to aggregations of flexible consumers
- Consumers specify deadlines for flexible consumption tasks (EV charging, water pumping, refrigeration etc.)
- Aggregators serve deferrable loads primarily from renewable generation assets, possibly resorting to real-time market purchases
- Two types of real-time market participation constraints:
 - Quantity (fuse size)
 - Threshold price (callable forward)

Centralized Load Dispatch Demand Bids Coupling

イロト 不得 とくほ とくほとう

æ

Coupling

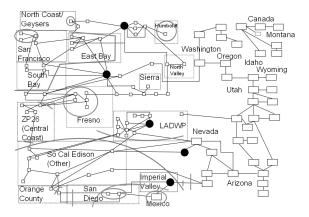


Centralized Load Dispatch Demand Bids Coupling

イロト 不得 とくほ とくほとう

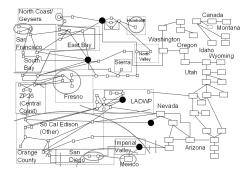
ъ

Dynamic Programming on Recombinant Lattices



Centralized Load Dispatch Demand Bids Coupling

イロト 不得 とくほ とくほ とう


3

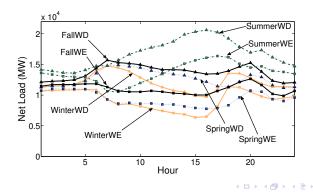
WECC Model

Introduction Flexible Demand Results

Schematic of WECC

イロト 不得 トイヨト イヨト 二日 二

Model Summary


- 124 units (82 fast, 42 slow)
- 53665 MW power plant capacity
- 225 buses
- 375 transmission lines
- 15 scenarios
- Two studies
 - Deep wind integration (14% energy integration, 2020)
 - Moderate wind integration (7% energy integration, 2012)

< □ > < 同 > < 三 > <

글 > 글

Day Types

- 8 day types considered, one for each season, one for weekdays/weekends
- Day types weighted according to frequency of occurrence

프 > 프

Data Sources

- Wind power production:
 - California ISO interconnection queue lists locations of planned wind power installations
 - NREL Western Wind and Solar Interconnection Study archives wind speed - wind power for Western US

イロト イポト イヨト イヨト

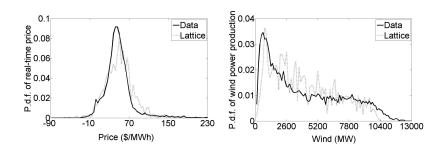
 Real-time price: California ISO Oasis online database (2004)

Calibration

Remove systematic effects:

$$y_t^S = \frac{y_t - \hat{\mu}_{mt}}{\hat{\sigma}_{mt}}.$$

Iransform data to obtain a Gaussian distribution:

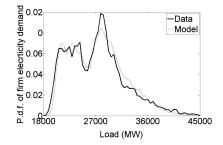

$$y_t^{GS} = N^{-1}(\hat{F}(y_t^S)).$$

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

Solution State the autoregressive parameters $\hat{\phi}_j$ and covariance matrix $\hat{\Sigma}$ using Yule-Walker equations.

Data Fit



イロン イロン イヨン イヨン

æ

Firm Demand Uncertainty

- Second order autoregressive model
- Data: California ISO 2004 Oasis database
- Single-area model without transmission constraints

ヘロト ヘヨト ヘヨト

프 🕨 🗆 프

Study Cases

	Zero	Moderate	Deep
Wind capacity (MW)	0	6,688	14,143
DR capacity (MW)	0	5,000	10,000
Daily wind energy (MWh)	0	46,485	95,414
Daily DR energy (MWh)	0	40,000	80,000
DR/firm energy (%)	0	6.1	12.2

<ロト <回 > < 注 > < 注 > 、

Operating Costs and Lost Load

	Daily Cost (\$)	Daily Load Shed (MWh)
No wind	9,012,031	17.301
Centralized Moderate	8,677,857	1.705
Bids Moderate	211,010	609.914
Coupled Moderate	265,128	2.217
Centralized Deep	8,419,322	10.231
Bids Deep	578,909	1221.492
Coupled Deep	705,497	112.452

ヘロト 人間 とくほとくほとう

₹ 990

	Capacity	Daily Spillage	
	(MW)	(MWh)	
No wind	26,123	N/A	
Moderate	26,254	0	
Deep	26,789	2	

Conclusions

- **Capacity requirements:** For the studied cases, increased load demand is almost fully absorbed by installed wind power capacity.
- **Cost of anarchy:** The cost of anarchy increases from 3.06% to 8.38% as the integration level increases.
- **Demand bids:** Price-responsive demand achieves better cost performance than coupling (2.43% 6.88% cost increase relative to centralized dispatch) but violates the 1-in-10-years reliability of the system 3.4 to 6.8 times

• Wind spillage: Negligible spillage of wind power.

Perspectives

- Price-responsive smart charging
- Stochastic dual dynamic programming algorithm with state-contingent real-time bids
- Transmission constraints
- Parallelization of the model in Lawrence Livermore National Laboratory high performance computing cluster

イロト イ押ト イヨト イヨトー

æ

References

- A. Papavasiliou, S. S. Oren, Large-Scale Integration of Deferrable Electricity and Renewable Energy Sources in Power Systems, submitted to IEEE Transactions on Power Systems.
- A. Papavasiliou, S. S. Oren, R. P. O'Neill, *Reserve* Requirements for Wind Power Integration: A Stochastic Programming Framework, accepted at IEEE Transactions on Power Systems.
- A. Papavasiliou, S. S. Oren, *Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network*, submitted to Operations Research.

ヘロト 人間 ト ヘヨト ヘヨト

References (II)

- A. Papavasiliou, S. S. Oren, *Integration of Contracted Renewable Energy and Spot Market Supply to Serve Flexible Loads*, 18th World Congress of the International Federation of Automatic Control, Milano, Italy, August 2011.
- A. Papavasiliou, S. S. Oren, Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis, 2010 Power and Energy Society General Meeting, Minneapolis, Minnesota, July 2010.
- A. Papavasiliou, S. S. Oren, *Coupling Wind Generators* with Deferrable Loads, IEEE Energy 2030, Atlanta, Georgia, November 2008.

ヘロト ヘアト ヘビト ヘビト

æ

Thank you

Questions?

Contact: tonypap@berkeley.edu

http://www3.decf.berkeley.edu/~tonypap/publications.html

A. Papavasiliou, Shmuel S. Oren INFORMS 2011

イロト イポト イヨト イヨト

3