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Motivation
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� Day-ahead market clearing (commitment) in Europe introduces
inefficiencies

– Omission of Kirchhoff’s law from market design

– Lack of coordination during operation

� Inefficiencies are exacerbated by renewable energy integration
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Goal
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� Compare 3 paradigms for day-ahead unit commitment in the
Central Western Europe (CWE) system

– Market Coupling: status quo

– Deterministic Unit Commitment: perfect coordination of
TSOs, representation of Kirchoff laws

– Stochastic Unit Commitment: endogenous representation of
uncertainty
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Common Modeling Framework
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� Relevant literature: (van der Weijde and Hobbs 2011 [2]),
(Oggioni, Murphy and Smeers 2014 [3])

� Contribution: quantify inefficiencies of European day-ahead
power exchanges while accounting for uncertainty and unit
commitment on a system of realistic size

� Two-stage process

– First stage: commitment of slow thermal units in the
day-ahead market

– Realization of uncertainty ξ : wind and solar power
production

– Second stage: commitment of fast thermal units and dispatch
of all units in real time

� Second stage (real-time) costs evaluated via Monte Carlo
simulation



Market Coupling Organization Model
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The day-ahead European power exchange represents transmission
constraints through a transportation model
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Computation of Net Transfer Capacity (NTC)
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� Net Transfer Capacity (NTC) = Total Transfer Capacity (TTC) -
Transmission Reliability Margin (TRM)

� For each hour τ the TTC from region a to b, TTCτ
a,b, is

computed as the maximum feasible cross-border flow

� Computation considers real network model and unit commitment
constraints for the pair of areas

l1

l2

a

b

f τ
a,b

TTCτ
a,b = max f τ

a,b

s.t. f τ
a,b ∈ UCa,b(Es[ξs])

ENTSO-E. Procedures for cross border transmission capacity assessments, 2001.



Market Clearing
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� COSMOS, EUPHEMIA, Madani and Van Vyve, 2013 [1]

� Continuous orders, block (fill-or-kill) orders, linked block orders
and exclusive block orders, with strict linear pricing

� Unit commitment constraints (DT, UT, ramps) not included in
the market clearing model ⇒ generators assumed to only bid
realizable orders

max Welfare(xi, yj)
s.t. Welfare(xi, yj) ≥ Surplus(si, sj)

(xi, yj , nk,t) ∈ PrimalFeasibleSet
(si, sj , pl,t, vk,t) ∈ DualFeasibleSetLR’(yj)

where xi, yj are order acceptance/rejection variables, si, sj the
corresponding orders surplus, pl,t the zonal prices, nk,t the
exchanges and vk,t the corresponding congestion dual variables



Exclusive Block Orders
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Constructions of Orders
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� General principle: agents bid truthfully

� Imports, renewable energy sources, demand represented as
continuous orders

� Pre-committed thermal generators (nuclear) bid continuous
orders at their marginal cost

� Other thermal units modeled as bidding large groups of
exclusive block orders, each order being a power output profile

� Surplus of the exclusive group for generator g given by

sg ≥ −C̄g(q
g) +

∑

t

q
g
t pl,t, qg ∈ UCg(q

g
0
), qg = (qg

1
, q

g
2
, . . . , q

g
T )

where UCg(q
g
0
) is the feasible set of power outputs (qg

0
is the

vector of initial conditions)



Embedding Unit Commitment Constraints
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� q
g
t approximated with n discrete bins, leading to
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� Products of ugk,t with continuous variables (e.g. pl,t) can be
replaced with a linearized big-M formulation, Glover 1975

� Feasible day-ahead schedule consistent with linear pricing



Counter trading
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� Second stage model, maintaining first stage commitment
decisions (slow units)

� International energy exchange

1. Maintaining cross-border flows, van der Weijde and Hobbs
2011 [2]

2. Maintaining country net-positions, Oggioni, Murphy and
Smeers 2014 [3]
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� Deviations penalized through an L1 penalty function, with cost
CL = maxg∈GMarginalCostg



Stochastic Unit Commitment
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� Endogenous modeling of uncertainty through a discrete
probability distribution

� Problem solved using dual decomposition and subgradient
method, Papavasiliou, Oren and O’Neill 2011 [4]

� Upper bound convergence accelerated by recovering NS + 1
feasible first stage schedules at each subgradient method iteration

Coordinating-
Process

(multiplier update)

Primal
Recovery

Subprob. iSubprob. 0
Subprob.

NS

· · · · · ·
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CWE System Data
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� Belgium, France, Germany, the Netherlands and Luxembourg

� CWE Phoenix database (shared by GDF Suez) ∼ Generators

� Oggioni, Murphy and Smeers 2014 [3] ∼ Transmission system
(15 nodes, 28 lines)

� ENTSO-E and Transmission System Operators

∼ Demand

∼ Cross-border physical flows (imports/exports)

∼ Wind and PV power production time series



Net Demand in the CWE System on Weekdays
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Simulation Settings
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� Slow generators: 114.2GW (+91.0GW of nuclear generators)

� Fast generators: 7.1GW (+26.9GW of aggregated CHP
generators)

� Wind and solar power production are uncertain only in Germany

� 8 typical days: 4 seasons × weekdays/weekends

� Initial conditions from 2-week deterministic UC solution

� Second stage (real-time) costs estimated using 200 Monte Carlo
samples (per season) from past realizations

� Stochastic unit commitment solved using 20 scenarios (per
season), selected using scenario reduction technique proposed by
Heitsch and Römisch, 2007 [5]



Model Comparison Overview
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� Compare 5 policies:

– Market coupling enforcing cross-border flows, TRM 15%
(MC-CBF )

– Market coupling enforcing net positions, TRM 15% (MC-NP)

– Market coupling with international re-dispatch, TRM 15%
(MC-free)

– Deterministic UC without reserves (DetermUC )

– Stochastic UC (StochUC )

� In terms of expected costs: MC-CBF (100%) ≻
MC-NP (97.4%) ≻ MC-free (95.8%) ≻ DetermUC (94.7%) ≻
StochUC (93.8%)



Cost Distribution Weekdays
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Cost Distribution Weekends
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Expected Cost Composition Weekdays
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Expected Cost Composition Weekends
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Conclusions
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� Efficiency gains of stochastic unit commitment relative to current
practice: MC-CBF - StochUC ∼ 1.48MMe per day

� Benefit of relaxing cross-border flows: MC-CBF − MC-free
∼ 1.00MMeper day

� Benefit of relaxing net positions: MC-free − MC-NP
∼ 0.39MMeper day

� Benefit of accounting for network physical constraints: MC-free
− DetermUC ∼ 0.27MMeper day

� Benefit of endogenously modeling uncertainty: DetermUC −
StochUC ∼ 0.21MMeper day
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Stochastic renewable energy supply
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(wind and solar power inside Germany)
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Cost Distribution
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� At an aggregate level, the net demand determines the
distribution of the operation costs:

– Autumn and winter, similar aggregate weather conditions:

⊲ Partial to complete cloudiness, with wind blowing at
different hours, but blowing every day

⊲ Even in clear days, due to solar light incidence angle, solar
power does not increase much

The hourly net demand distribution is flat, leading to flat
distributed operation costs with no extreme values

– In spring and summer we observe the opposite weather
conditions, leading to peaky distributed operation costs, with
extreme values



Expected Cost Composition
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� Start-up and minimum production cost differences are explained
by the different models used in the first-stage:

– Market coupling models with strict linear pricing and zonal
transmission, v.s. global minimization with the actual grid

– Additional first-stage unit started up due to conservativeness
of transport model in market coupling policies
(Net-Transfer-Capacities)

� Production cost differences are mostly explained by the
restrictions imposed over cross-border flows or net-positions in
real operation



Box Plot, Gaussian Standard Distribution
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Source: Wikipedia. Box plot. http://en.wikipedia.org/wiki/Box plot
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