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Motivation and Research Objective

Increased computational burden in power systems
operations due to:

renewable penetration and
demand response integration

Potential applications of distributed computation:
Stochastic optimization
Robust optimization
Topology control, system expansion planning
Optimization of storage (deferrable loads/demand
response, hydro-thermal scheduling)

Want to quantify sensitivity of:
unit commitment policy
duality gaps
cost performance

on number of scenarios.
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Parallel Computing Literature in Power Systems

Monticelli et al. (1987): Benders decomposition algorithm
for SCOPF
Pereira et al. (1990): Various applications of parallelization
including SCOPF, composite (generator, transmission line)
reliability, hydrothermal scheduling
Falcao (1997): Survey of HPC applications in power
systems
Kim, Baldick (1997): Distributed OPF
Bakirtzis, Biskas (2003) and Biskas et al. (2005):
Distributed OPF
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PSR Cloud

Industry practice for hydrothermal scheduling
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Lagrangian Decomposition
Scenario Selection

Full Model

Application: stochastic unit commitment for large-scale
renewable energy integration
Two-stage model representing DA market (first stage)
followed by RT market (second stage)

Stochastic model
(renewable energy,

demand,
contingencies)

Scenario 
selection

Stochastic UC

Economic 
dispatch

Outcomes

Representative 
outcomes

Slow gen UC 
schedule

Outcomes

Min load, 
startup, 
fuel cost
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Lagrangian Decomposition
Scenario Selection

Unit Commitment Model

Domain D represents min up/down times, ramping rates,
thermal limits of lines, reserve requirements
Generator set partitioned between fast (Gf ) and slow (Gs)
generators

(UC) : min
∑
g∈G

∑
t∈T

(Kgugt + Sgvgt + Cgpgt )

s.t .
∑

g∈Gn

pgt = Dnt

P−g ugt ≤ pgt ≤ P+
g ugt

elt = Bl(θnt − θmt )

(p,e,u,v) ∈ D
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Stochastic Unit Commitment Model

(SUC) : min
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst )

s.t .
∑

g∈Gn

pgst = Dnst ,

P−gsugst ≤ pgst ≤ P+
gsugst

elst = Bls(θnst − θmst )

(p,e,u,v) ∈ Ds

ugst = wgt , vgst = zgt ,g ∈ Gs
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Lagrangian Decomposition
Scenario Selection

Lagrangian Decomposition Algorithm

Past work: (Takriti et al., 1996), (Carpentier et al., 1996),
(Nowak and Römisch, 2000), (Shiina and Birge, 2004)
Key idea: relax non-anticipativity constraints on both unit
commitment and startup variables

1 Balance size of subproblems
2 Obtain lower and upper bounds at each iteration

Lagrangian:

L =
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst )

+
∑

g∈Gs

∑
s∈S

∑
t∈T

πs(µgst (ugst − wgt ) + νgst (vgst − zgt ))
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Lagrangian Decomposition
Scenario Selection

Parallelization

z gt
*

v gst
*

wgt
*

gst gst

gst
*u

Dual multiplier 
update

Second-stage 
subproblems P2 s

1 2 N s
.  .  .  .

P1
First-stage 
subproblem

Second-stage 
feasibility runs ED s

1 2 N s
.  .  .  .

N c1 2 .  .  .  .

Monte Carlo 
economic dispatch ED

c

Lawrence Livermore National Laboratory Hera cluster:
13,824 cores on 864 nodes, 2.3 Ghz, 32 GB/node
MPI calling on CPLEX Java callable library
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Lagrangian Decomposition
Scenario Selection

Scenario Selection

Past work: (Gröwe-Kuska et al., 2002), (Dupacova et al.,
2003), (Heitsch and Römisch, 2003), (Morales et al., 2009)
Scenario selection algorithm inspired by importance
sampling

1 Generate a sample set ΩS ⊂ Ω, where M = |ΩS| is
adequately large. Calculate the cost CD(ω) of each sample
ω ∈ ΩS against the best deterministic unit commitment

policy and the average cost C̄ =
M∑

i=1

CD(ωi )

M
.

2 Choose N scenarios from ΩS, where the probability of
picking a scenario ω is CD(ω)/(MC̄).

3 Set πs = CD(ω)−1 for all ωs ∈ Ω̂.
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Lagrangian Decomposition
Scenario Selection

Wind Production Model

Relevant literature: (Brown et al, 1984), (Torres et al.,
2005), (Morales et al, 2010)
Calibration steps

1 Remove systematic effects:

yS
kt =

ykt − µ̂kmt

σ̂kmt
.

2 Transform data to obtain a Gaussian distribution:

yGS
kt = N−1(F̂k (yS

kt )).

3 Estimate the autoregressive parameters φ̂kj and covariance
matrix Σ̂ using Yule-Walker equations.
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Lagrangian Decomposition
Scenario Selection

Data Fit
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WECC Model
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Unit Characteristics

Type No. of units Capacity (MW)
Nuclear 2 4,499
Gas 94 20,595.6
Coal 6 285.9
Oil 5 252
Dual fuel 23 4,599
Import 22 12,691
Hydro 6 10,842
Biomass 3 558
Geothermal 2 1,193
Wind (deep) 10 14,143
Fast thermal 88 11,006.1
Slow thermal 42 19,225.4
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Model Size

Model Gens Buses Lines Hours Scens.
CAISO1000 130 225 375 24 1000

WILMAR 45 N/A N/A 36 6
PJM 1011 13867 18824 24 1

Model Integer var. Cont. var. Constraints
CAISO1000 3,121,800 20,643,120 66,936,000

WILMAR 16,000 151,000 179,000
PJM 24,264 833,112 1,930,776
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Number of Scenarios Versus Optimality Gap

A large number of scenarios:
results in a more accurate representation of uncertainty
increases the amount of time required in each iteration of
the subgradient algorithm

A smaller optimality gap implies that the relaxation is
‘closer’ to an optimal solution
Given a time budget (a few hours at best in day-ahead
operations), do we want to solve a more representative
problem less accurately or a less representative problem
more accurately?
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Cost Ranking: Winter Weekdays

S = 1000 corresponds to Shapiro’s SAA algorithm
Average daily cost and one standard deviation for 1000
Monte Carlo outcomes
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Cost Ranking: Spring Weekdays

S = 1000 corresponds to Shapiro’s SAA algorithm
Average daily cost and one standard deviation for 1000
Monte Carlo outcomes
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Cost Ranking: Summer Weekdays

S = 1000 corresponds to Shapiro’s SAA algorithm
Average daily cost and one standard deviation for 1000
Monte Carlo outcomes
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Cost Ranking: Fall Weekdays

S = 1000 corresponds to Shapiro’s SAA algorithm
Average daily cost and one standard deviation for 1000
Monte Carlo outcomes
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Influence of Duality Gap

Among three worse policies in summer, S = 1000 with G =
2%, 2.5%
Best policy for all day types has a 1% optimality gap
(S = 1000 only for spring)
For all but one day type the worst policy has G = 2.5%

For spring, best policy is G = 1,S = 1000
For spring, summer and fall the worst policy is the one with
the fewest scenarios and the greatest gap, namely
G = 2.5,S = 10
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Validation of Scenario Selection Policy

Top performance for winter, summer and fall is attained by
proposed scenario selection algorithm based on
importance sampling
For all day types, the importance sampling algorithm
results in a policy that is within the top 2 performers
Satisfactory performance (within top 3) can be attained by
models of moderate scale (S50), provided an appropriate
scenario selection policy is utilized
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Run Time Ranking: Winter Weekdays

Best-case running times (S = P)
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Run Time Ranking: Spring Weekdays

Best-case running times (S = P)
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Run Time Ranking: Summer Weekdays

Best-case running times (S = P)
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Run Time Ranking: Fall Weekdays

Best-case running times (S = P)
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How Many Scenarios?

Depends on the amount of available computation time and
the number of available computational resources
No theoretical guarantee that a smaller gap for the same
instance will deliver a better result (compare, for example,
the case of G = 2 with the case of G = 2.5 for S = 10 for
winter weekdays). Nevertheless, it is commonly preferable
to decrease the duality gap as much as possible
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Running Times: Winter Weekdays
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Running Times: Spring Weekdays
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Running Times: Summer Weekdays
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Running Times: Fall Weekdays
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Unit Commitment: Winter Weekdays
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Unit Commitment: Spring Weekdays
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Unit Commitment: Summer Weekdays
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Unit Commitment: Fall Weekdays
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Bounds: Winter Weekdays
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Bounds: Spring Weekdays
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Bounds: Summer Weekdays
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Bounds: Fall Weekdays
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Conclusions

Validation of scenario selection algorithm: The
importance sampling scenario selection algorithm
performs favorably relative to SAA with 1000 scenarios
Decreasing the duality gap versus increasing the
number of scenarios: Reducing the duality gap seems to
yield comparable benefits relative to adding more
scenarios
Efficiency gains: All problems solved within 24 hours,
given enough processors. Parallelization permits the
running time of the studied model to run within acceptable
time frames from operations standpoint.
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Perspectives

Extensions of present model
Bundling methods and asynchronous multiplier updating
Analysis of duality gap
Comparison of alternative relaxations

Parallel algorithms for fast topology control (ARPA-E)
Comparative study of Lagrangian relaxation and Benders
decomposition algorithms for stochastic unit commitment
and security constrained unit commitment
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Thank you

Questions?

Contact: anthony.papavasiliou@uclouvain.be

http://perso.uclouvain.be/anthony.papavasiliou/public_html/
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