Energy-Only Markets with Deferrable Demand

Center for Operations Research and Econometrics (CORE), Université catholique de Louvain (UCL)

Anthony Papavasiliou, Yves Smeers

Energy-Only Markets with Deferrable Demand

・ロト ・回 ト ・ ヨト ・ ヨトー

æ

Motivation and Objectives

Motivation

- Integration of renewables \Rightarrow value migrates from energy to capacity
- Missing money \Rightarrow retirement of flexible units
- Energy-only market with demand response can reward capacity ...
- ... but demand function models of *deferrable* demand are inaccurate

• Objectives: How does integration of

- operating reserve demand curves [Hogan, 2005]
- deferrable demand

impact operations and investment?

ヘロン 人間 とくほとく ほとう

Residential Deferrable Demand

Dryers, dish washers, refrigerators, air conditioning

Energy-Only Markets with Deferrable Demand

▶ < Ξ >

Commercial Deferrable Demand

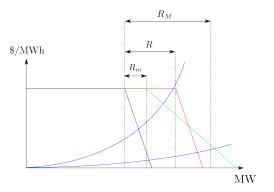
Water pumping, ventilation

Energy-Only Markets with Deferrable Demand

.≣⇒

▲ @ ▶ ▲ 三 ▶ ▲

Industrial Deferrable Demand



Pulp paper, water treatment, air liquefaction, cement mills

Energy-Only Markets with Deferrable Demand

'Energy-Only' Markets [Hogan, 2005]

Idea: reserve demand curve in economic dispatch

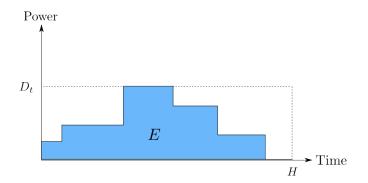
Red: fixed reserve requirement Green: reserve demand function

Energy-Only Markets with Deferrable Demand

프 🖌 🛪 프 🕨

Motivation of Proposed Design

- *Short-run efficiency* through co-optimization of reserves and energy
- Long-run efficiency through proper scarcity signals
- No forecasts required for ICap targets
- Price spikes more frequent and smaller
- Market power can be mitigated without depressing prices
- Limited regulatory intervention: definition of R_m, R_M
 - Below *R_m*, price = VOLL (involuntary load curtailment)
 - Above R_M , price = 0 (reliability does not improve)
 - Between min and max, capacity has value

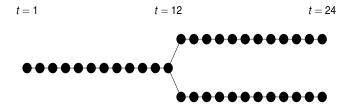

ヘロト 人間 ト ヘヨト ヘヨト

Agents

- Suppliers
 - Conventional and renewable
 - Renewable output is uncertain
 - Income stream: energy + operating reserve markets
- Consumers
 - Non-deferrable consumers (elastic or not)
 - Deferrable consumers
 - Total amount of energy demand *E_l* within horizon
 - Valuation V₁
 - Consumption rate limit D₁
 - Energy charged as traded commodity
 - Reserve charged as public good (ex-post uplift payments)
- System operator
 - Market clearing and operation
 - Procures reserves on behalf of consumers

프 🖌 🛪 프 🛌

Introduction Model Case Study	Energy-Only Real-Time Market
-------------------------------------	------------------------------



Energy-Only Markets with Deferrable Demand

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Uncertainty

- Multistage stochastic program
- Source of uncertainty: renewable supply
- Ot: outcomes in period t
- $A(\omega)$: ancestor of outcome ω

・ 回 ト ・ ヨ ト ・ ヨ ト

Energy-Only Real-Time Market

Objective Function

$$\max \sum_{t \in T} \sum_{\omega \in O_t} P_{\omega} \cdot \int_0^{d_{\omega,t}} VE(x) dx$$

+
$$\sum_{t \in T} \sum_{\omega \in O_t} P_{\omega} \cdot \int_0^{r_{\omega,t}} VR(x) dx$$

-
$$\sum_{I \in DL} \sum_{\omega \in O_H} P_{\omega} \cdot V_I \cdot x_{I,\omega,H}$$

-
$$\sum_{g \in G \cup R} \sum_{t \in T} \sum_{\omega \in O_t} P_{\omega} \cdot \int_0^{p_{g,\omega,t}} MC_g(x) dx$$

Energy demand function

Reserves demand function

Cost of unserved deferrable demand

Production cost

ヘロト 人間 とくほとくほとう

₹ 990

Energy-Only Markets with Deferrable Demand

Energy-Only Real-Time Market

Constraints

$$\begin{split} p_{g,\omega,t} + rs_{g,\omega,t} &\leq C_g, g \in G \\ p_{g,\omega,t} &\leq C_{g,\omega}, g \in R \\ &\sum_{g \in G \cup R} p_{g,\omega,t} = d_{\omega,t} + \sum_{l \in DL} d_{l,\omega,t} + EX_t \\ &\sum_{g \in G} rs_{g,\omega,t} = r_{\omega,t} \\ d_{l,\omega,t} &\leq D_l \\ x_{l,\omega,t} &= x_{l,A(\omega),t-1} - d_{l,\omega,t}, t \in T - \{1\} \\ &\sum_{k_l,\omega,1} E_l - d_{l,\omega,1} \\ p_{g,\omega,t}, r_{\omega,t}, rs_{g,\omega,t}, d_{\omega,t}, d_{l,\omega,t}, x_{l,\omega,t} \geq 0 \end{split}$$

Max capacity (conventional)

Max capacity (renewable)

Energy market clearing

Reserves market clearing

Deferrable demand max rate

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Deferrable demand state evolution

Deferrable demand state evolution

Focus on Germany

- Demand data: ENTSO-E transparency platform
- Wind and solar power data: EEX Transparency Platform
- Flexible load data: (Gils, 2014)

・ 回 ト ・ ヨ ト ・ ヨ ト

Germany Fuel Mix

Technology	Capacity	Min bid	Max bid	Average	IC
	(MW)	(€/MWh)	(€/MWh)	(€/MWh)	(€/MW-day)
Biomass	4277	0	60.6	30.2	669.6
Coal	24969	14.6	31.6	23.1	388.8
Waste	1329	0	31.0	15.5	902.4
Gas	22236	57.1	95.6	66.3	122.4
Lignite	19847	7.4	13.0	10.2	597.6
Oil	2207	104.6	223.7	164.2	40.8
Other	4534	18.4	21.1	19.8	343.2
Hydro pumped	6759	25.0	125.0	65.0	573.6
Hydro ROR	3677	0	0	0	319.2
Hydro seasonal	1613	25.0	125.0	65.0	319.2
Nuclear	12078	5.9	7.7	6.8	762.2

Source: EEX Transparency Platform

Energy-Only Markets with Deferrable Demand

ヘロン 人間 とくほど くほとう

₹ 990

Deferrable Demand Data: Industrial

Туре	Sector	Time-varying?	E [TWh/yr]	<i>P</i> [MW]	E [MWh/day]	Flexibility
1		No	2.166	260	5934	1.05
2	1	No	4.950	595	13562	1.05
3	1	No	10.940	1315	29974	1.05
4	1	No	0.651	78	1784	1.05
5	1	No	1.473	177	4034	1.05
6	1	No	0.603	72	1651	1.05
7	1	No	0.482	58	1321	1.05
8	1	Yes	4.598	553	12597	1.05
9	1	Yes	4.774	817	13079	1.50
10	I	No	2.556	365	7003	1.25

Energy-Only Markets with Deferrable Demand

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Deferrable Demand Data: Commercial

Туре	Sector	Time-varying?	E [TWh/yr]	<i>P</i> [MW]	E [MWh/day]	Flexibility
11	С	Yes	8.851	1516	24249	1.50
12	С	Yes	1.226	245	3358	1.75
13	С	Yes	1.770	354	4850	1.75
14	С	Yes	17.157	3917	47007	2.00
15	С	Yes	0.136	495	373	31.85
16	С	Yes	2.043	8170	5596	35.04
17	С	Yes	2.723	4190	7461	13.48
18	С	Yes	4.085	933	11192	2.00
19	С	No	4.085	717	11192	1.54

Energy-Only Markets with Deferrable Demand

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Deferrable Demand Data: Residential

Туре	Sector	Time-varying?	E [TWh/yr]	<i>P</i> [MW]	E [MWh/day]	Flexibility
20	R	Yes	9.472	13532	25952	12.51
21	R	Yes	15.741	22487	43126	12.51
22	R	Yes	7.496	25671	20537	30.00
23	R	Yes	4.750	23283	13013	42.94
24	R	Yes	6.888	16557	18870	21.06
25	R	Yes	0.361	1313	990	31.85
26	R	Yes	2.189	8756	5997	35.04
27	R	Yes	14.487	22288	39691	13.48

Energy-Only Markets with Deferrable Demand

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Classes of flexible loads

- 1. Pulp production
- 2. Recycling paper processing
- 3. Paper machines
- 4. Calcium carbide production
- 5. Air liquefaction O2
- 6. Air liquefaction N2
- 7. Air liquefaction Ar
- 8. Cement mills
- 9. Cooling in food manufacturing
- 10. Ventilation wo process relevance
- 11. Cooling, food retailing
- 12. Cold storages
- 13. Cooling, hotels and restaurants
- 14. Commercial ventilation

- 15. Commercial AC
- 16. Commercial storage water heater
- 17. Commercial storage heater
- 18. Pumps in water supply
- 19. Waste water treatment
- 20. Freezer
- 21. Refrigerator
- 22. Washing machines
- 23. Tumble dryers
- 24. Dish washers
- 25. Residential AC
- 26. Residential storage water heater

< ロ > < 同 > < 回 > < 回 >

27. Residential storage heater

• Where is the energy?

- Residential: 45% of annual flexible energy demand
- Commercial: 31% of annual flexible energy demand
- Industrial: 24% of annual flexible energy demand
- Where is the flexibility?
 - Residential: 12.51-42.94%
 - Commercial: 1.5-35.04%
 - Industrial: 1.05-1.5%

・ 同 ト ・ ヨ ト ・ ヨ ト

Assumptions

Variable cost:

$$TC(p) = a \cdot p + 0.5 \cdot b \cdot p^2$$

- Two load profiles based on November 6th, 2013
 - Nominal
 - 1.5x
- Renewable supply (scenario tree)
 - Hours 1-12: 5 GW
 - Hours 13-24: 0 GW or 10 GW (equally likely)
- Demand function
 - Inelastic segment (95%): VOLL = 5000 €/MWh
 - Elastic segment (5%): linear, crossing two points
 - Price-quantity from data
 - 0 MW at 10000 €/MWh (VOLL \simeq 5000 €/MWh)

Case Studies Analyzed

- IE-IR: No deferrable demand, fixed reserve requirement
- 2 EE-IR: Deferrable demand, fixed reserve requirement
- IE-ER: No deferrable demand, Hogan reserve pricing
- EE-ER: Deferrable demand, Hogan reserve pricing

Welfare Results of RT Market

	IE-IR	EE-IR	IE-ER	EE-ER
Welfare	8,314.7	8,315.6	8,314.6	8,315.6
Investment cost	36.5	36.5	36.5	36.5
Generation cost	36.1	35.2	36.1	35.2
Energy Payments	79.0	75.6	104.5	75.6
Reserve payments	0	0	2.1	0
Generation profits	6.4	4.0	34.0	4.0
Non-def benefit	6,515.3	6,515.3	6,515.2	6,515.3
Deferrable benefit	1,872.0	1,872.0	1,872.0	1,872.0
Load profit	8,308.3	8,311.7	8,280.6	8,311.7

Results in million \in

Energy-Only Markets with Deferrable Demand

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Energy and Reserve Price Statistics of RT Market

	IE-IR	EE-IR	IE-ER	EE-ER
Average E	55.9	52.5	77.6	52.5
Min E	22.8	25.5	22.8	25.5
Max E	93.3	79.3	2178.3	79.3
St. dev. E	21.4	22.1	216.6	22.1
Average R	n/a	n/a	21.7	0
Min R	n/a	n/a	0	0
Max R	n/a	n/a	2085.9	0
St. dev. R	n/a	n/a	211.8	0

Results in €/MWh

Energy-Only Markets with Deferrable Demand

ヘロン 人間 とくほ とくほ とう

3

- EE-IR and EE-ER are identical. Due to deferrable demand, there is an oversupply of operating reserve
- Generation cost decrease resulting from deferrable demand: 2.57-2.6%
- Cost increase resulting from operating reserve demand curve: 0.3%
- Generation profits peak in IE-ER
- Load profits drop in case IE-ER

伺き くほき くほう

Impact of Hogan energy-only market model in Belgian market

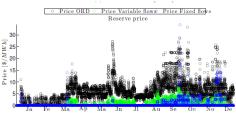


FIGURE 7 – Reserve price

Energy-Only Markets with Deferrable Demand

< ∃→

э