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Motivation and Research Objective

Increased need for systematic approach to committing
day-ahead reserves due to:

Renewable penetration
Demand response integration

Four paradigms for systematic day-ahead scheduling:
Stochastic optimization
Security constrained optimization
Robust optimization
Probabilistically constrained optimization

Our objective:
Compare relative performance of SUC and SCUC
Demonstrate benefits of parallel computation
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Systematic Approaches to Unit Commitment

Stochastic UC (Takriti 1996): minimize expected cost over
weighted set of scenarios

Difficulty: scenario selection and probability assignment
Common solution approach: Lagrangian relaxation

Security constrained UC: minimize no-contingency cost
while withstanding failures without shedding load

(Wang 2008): exogenous reserve criteria, Benders
(Wu 2007): blend failures with scenarios, LR

Robust UC (Jiang 2012, Bertsimas 2013): minimize cost of
operation against worst-case uncertainty

Limited information about uncertainty required
Consistent with paradigm of system operators

UC with probabilistic constraints (Ozturk 2004,
Vrakopoulou 2013)

Limited information about uncertainty required
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Parallel Computing Literature in Power Systems

Monticelli et al. (1987): Benders decomposition algorithm
for SCOPF
Pereira et al. (1990): Applications of parallelization in
various applications including SCOPF, composite
(generator, transmission line) reliability, hydrothermal
scheduling
Falcao (1997): Survey of HPC applications in power
systems
Kim, Baldick (1997): Distributed OPF
Bakirtzis, Biskas (2003) and Biskas et al. (2005):
Distributed OPF
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PSR Cloud

Industry practice for hydrothermal scheduling
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Unit Commitment Model

Domain D represents min up/down times, ramping rates,
thermal limits of lines, reserve requirements, import
constraints

(UC) : min
∑
g∈G

∑
t∈T

(Kgugt + Sgvgt + Cgpgt )

s.t .
∑

g∈Gn

pgt = Dnt

P−g ugt ≤ pgt ≤ P+
g ugt

ekt = Bk (θnt − θmt ), k = (m,n)

(p,e,u,v) ∈ D
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Stochastic Unit Commitment Model

(SUC) : min
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst )

s.t .
∑

g∈Gn

pgst = Dnst ,

P−gsugst ≤ pgst ≤ P+
gsugst

ekst = Bks(θnst − θmst ), k = (m,n)

(p,e,u,v) ∈ Ds

ugst = wgt , vgst = zgt ,g ∈ Gs

1 First stage: DA market realization for slow generators Gs
2 Renewable supply, line / generator outages
3 Second stage: RT market realization
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Scenario-Based Security Constrained Unit
Commitment

(SCUC) : min
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst )

s.t .
∑

g∈Gn

pgst = Dnst

P−gsugst ≤ pgst ≤ P+
gsugst ,g ∈ G

ekst = Bks(θnst − θmst ), k = (m,n)

(p,e,u,v) ∈ Ds

plst = 0, l ∈ L, s ∈ S, t ∈ T
ugst = wgt , vgst = zgt ,g ∈ Gs

May not have feasible second-stage response
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Scenario Selection [1 - 3]

Stochastic UC: scenario selection algorithm inspired by
importance sampling

1 Generate a sample set ΩS ⊂ Ω, where M = |ΩS| is
adequately large. Calculate the cost CD(ω) of each sample
ω ∈ ΩS against the best deterministic unit commitment

policy and the average cost C̄ =
M∑

i=1

CD(ωi )

M
.

2 Choose N scenarios from ΩS, where the probability of
picking a scenario ω is CD(ω)/(MC̄).

3 Set πs = CD(ω)−1 for all ωs ∈ Ω̂.
Security Constrained UC:

1 S is Cartesian product of renewable supply with no
contingency and worst single-element contingencies

2 Equal πs > 0 for no-contingency scenarios, πs = 0 for
single-element contingency scenarios
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Lagrange Relaxation for SUC [1 - 3]

zgt
*

v
gst
*

w
gt
*

gst gst

gst
*u

Dual multiplier 
update

Second-stage 
subproblems

.  .  .  .

First-stage 
subproblem P1

Second-stage 
feasibility runs

.  .  .  .

UC1 UC2 UCN

ED1 ED2 EDN

L =
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst )

+
∑

g∈Gs

∑
s∈S

∑
t∈T

πs(µgst (ugst − wgt ) + νgst (vgst − zgt ))
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Benders Decomposition for SCUC

Motivation:
Good feasibility cuts can be generated by severe
contingencies
Optimality cuts can be rapidly computed in parallel

Assumptions
Convexity of value function: unit commitment has to be
fixed in the first stage for all generators
Ramping: assume away ramping constraints in order to
decompose second-stage domain by time period, Dst
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Benders Decomposition for SUC

First-stage 
subproblem

...OPF1 OPFS

Feasible?

N

Y

Feasibility 
cut

Optimality
cut

In order to avoid stall of standard feasibility cuts
(Van-Slyke, Wets, 1969), pass entire set of power flow
equations Dst for most severe contingency
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WECC Model

130 units, 225 buses, 375 transmission lines
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Unit Characteristics

Type No. of units Capacity (MW)
Nuclear 2 4,499
Gas 94 20,595.6
Coal 6 285.9
Oil 5 252
Dual fuel 23 4,599
Import 22 12,691
Hydro 6 10,842
Biomass 3 558
Geothermal 2 1,193
Wind (deep) 10 14,143
Fast thermal 88 11,006.1
Slow thermal 42 19,225.4

A. Papavasiliou Comparative Study of SUC and SCUC



Introduction
Model

Results

System
Comparison of SUC and SCUC

Implementation

Lawrence Livermore National Laboratory
8 CPUs per node, 2.4 GHz and 10 GB per node
MPI calling on CPLEX Java callable library

30 scenarios:
SUC: importance sampling
SCUC: Cartesian product of ten renewable production
scenarios with no-contingency case and two most severe
contingencies (Diablo and San Onofre nuclear plants)

1,000 Monte Carlo outcomes
Spring weekdays (calibrated against NREL wind data)
1% generator failure probability
0.1% line failure probability
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Unit Commitment Schedules
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Lagrangian Relaxation

Benders Decomposition

Conservative commitment of SCUC driven by assumption
that all generators are slow.
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Performance

Table: Daily cost breakdown ($)

Startup Min. load Load shed Fuel Total
SCUC 66.5 1,205.3 0 4,687.3 5,959.1
SUC 106.0 699.4 0.3 4,831.5 5,637.2

SCUC is more reliable, at the expense of a 5.4% cost
increase.
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Running Time of Benders Decomposition
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Algorithm converged to optimal solution in 31 iterations.
First feasible UC schedule detected in iteration 19.
Marginal benefits vanish beyond 15 processors. Fully
serial: 26.6 minutes. Fully parallel: 14.8 minutes.
Approach is not scalable as number of scenarios increases
(due to growth of first-stage subproblem).
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Running Time of Lagrangian Decomposition

5 10 15 20 25 300

2

4

6x 104

Processors

R
un

ni
ng

 ti
m

e 
(s

ec
)

Algorithm ran for 80 iterations. Lower bound: $5.868M.
Upper bound: $5.911M.
Marginal benefits vanish beyond 15 processors. Fully
serial: 15.8 hours. Fully parallel: 47.7 minutes.
Approach is scalable as number of scenarios increases.
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Conclusions and Perspectives

Tradeoffs: The SCUC model achieves greater reliability at
the expense of a 5.4% cost increase
Parallelism: Lagrange relaxation algorithm benefits more
from parallelism

Second-stage problems of SUC are more difficult to solve
First-stage problem of SCUC is not decomposable

Future work: Improve feasibility cuts in Benders algorithm
in order to scale for larger number of scenarios
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Thank you

Questions?

Contact: anthony.papavasiliou@uclouvain.be

http://perso.uclouvain.be/anthony.papavasiliou/publications.html
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Lagrangian Decomposition Algorithm

Past work: (Takriti et al., 1996), (Carpentier et al., 1996),
(Nowak and Römisch, 2000), (Shiina and Birge, 2004)
Key idea: relax non-anticipativity constraints on both unit
commitment and startup variables

1 Balance size of subproblems
2 Obtain lower and upper bounds at each iteration

Lagrangian:

L =
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst )

+
∑

g∈Gs

∑
s∈S

∑
t∈T

πs(µgst (ugst − wgt ) + νgst (vgst − zgt ))
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