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Introduction

Motivation and Research Objective

@ Increased need for systematic approach to committing
day-ahead reserves due to:

o Renewable penetration
e Demand response integration
@ Four paradigms for systematic day-ahead scheduling:
e Stochastic optimization
e Security constrained optimization
e Robust optimization
e Probabilistically constrained optimization
@ Our objective:
e Compare relative performance of SUC and SCUC
e Demonstrate benefits of parallel computation
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Introduction

Systematic Approaches to Unit Commitment

@ Stochastic UC (Takriti 1996): minimize expected cost over
weighted set of scenarios

o Difficulty: scenario selection and probability assignment
e Common solution approach: Lagrangian relaxation
@ Security constrained UC: minimize no-contingency cost
while withstanding failures without shedding load
e (Wang 2008): exogenous reserve criteria, Benders
e (Wu 2007): blend failures with scenarios, LR
@ Robust UC (Jiang 2012, Bertsimas 2013): minimize cost of
operation against worst-case uncertainty

e Limited information about uncertainty required
e Consistent with paradigm of system operators

@ UC with probabilistic constraints (Ozturk 2004,
Vrakopoulou 2013)

e Limited information about uncertainty required
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Introduction

Parallel Computing Literature in Power Systems

@ Monticelli et al. (1987): Benders decomposition algorithm
for SCOPF

@ Pereira et al. (1990): Applications of parallelization in
various applications including SCOPF, composite
(generator, transmission line) reliability, hydrothermal
scheduling

@ Falcao (1997): Survey of HPC applications in power
systems

@ Kim, Baldick (1997): Distributed OPF

@ Bakirtzis, Biskas (2003) and Biskas et al. (2005):
Distributed OPF
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Introduction

PSR Cloud

Industry practice for hydrothermal scheduling

800 PSR Case Study: Amazon Web Services
[+ 5 i Faws.amazon.com/solutions case-studies s 3 ¢ (@ oo
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Authorization Module - Authenticates each request and authorizes the user to proceed with the
requested operation.
Queuing Module - Queues the authorized requests for asynchronous processing,

Cloud Wrapping Module - Executes each service in the queue by allocating the resources needed for the
8 h by AWS.

The PSR architecture is depicted in the following diagram:

PSR Cloud Client PSR Cloud Server
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Since moving to the cloud, PSR has recorded impressive results. Mr. Pereira explains: "AWS is important to our
‘consulting services in order to run our mathematical models in tolerable execution times, as well s for our customers
when they buy our models to run them on their own. Internal measurements have been taken and the expected power
of the cloud was proven to be the right direction. As an example, a glance of AWS usage in October 2010 revealed over
44,000 orocessor hours were carried out. which would have reauired 76 davs to be handied usina the local available
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Unit Commitment Variants
Model Scenario Selection
Decomposition Algorithms

Unit Commitment Model

@ Domain D represents min up/down times, ramping rates,
thermal limits of lines, reserve requirements, import
constraints

geGteT

9€Gn
Py ugt < pgt < Py Ugt
ext = Bk(Ont — Omt), k = (m, n)
(p,e,u,v) €D
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Unit Commitment Variants
Model Scenario Selection
Decomposition Algorithms

Stochastic Unit Commitment Model

(SUC) : min Z Z Zﬂs(KgUgst + SgVgst + CgPgst)
gcGseSteT

s.t. Z pgst = Dnsh
9g€Gn
P;gugst < Pgst < P;sugst
exst = Brks(Onst — Omst), k = (m, n)
(p,e,u,v) € Dg
Ugst = Wgt, Vgst = Zgt, 9 € Gs
@ First stage: DA market realization for slow generators Gg

© Renewable supply, line / generator outages
© Second stage: RT market realization
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Unit Commitment Variants
Model Scenario Selection
Decomposition Algorithms

Scenario-Based Security Constrained Unit
Commitment

(SCUC) : min Z Z Z ms(KgUgst + SqVgst + CgPgst)
geGseSteT

S.t. Z Pgst = Dnst

g€Gn
PgsUgst < Pgst < Pgsugst,g eG
exst = Bks(Onst — Omst), kK = (m, n)
(p,e,u,v) € Ds
pst=0,lelL,seS,teT
Ugst = Wgt, Vgst = Zgt, 9 € Gs

@ May not have feasible second-stage response
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Unit Commitment Variants
Model Scenario Selection
Decomposition Algorithms

Scenario Selection [1 - 3]

@ Stochastic UC: scenario selection algorithm inspired by
importance sampling

@ Generate a sample set Qs C Q, where M = |Qg| is
adequately large. Calculate the cost Cp(w) of each sample
w € Qg against the best deterministic unit commitment

policy and the average cost C = Z Co( w’).

i=1
@ Choose N scenarios from Qg, where the probability of

picking a scenario w is Cp(w)/(MC).
© Set s = Cp(w) ' forallw’ € Q.
@ Security Constrained UC:
@ Sis Cartesian product of renewable supply with no
contingency and worst single-element contingencies
@ Equal 75 > 0 for no-contingency scenarios, 7s = 0 for
single-element contingency scenarios
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Unit Commitment Variants
Model Scenario Selection
Decomposition Algorithms

Lagrange Relaxation for SUC [1 - 3]

r‘gst l'gst

Dual multiplier (=&

> update w

First-stage
subproblem P1

Second-stage
subproblems

2 B
gt gt

Second-stage

feasibility runs

Ygst Vgst ED7 - - - -[EDY

L= Z Z Z Ts(KgUgst + SgVgst + CgPgst)
geGseSteT

+ Z Z Z 7s(pgst(Ugst — Wot) + vgst(Vgst — Zgt))

geGs seS teT
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Unit Commitment Variants
Model Scenario Selection
Decomposition Algorithms

Benders Decomposition for SCUC

@ Motivation:
o Good feasibility cuts can be generated by severe
contingencies
e Optimality cuts can be rapidly computed in parallel
@ Assumptions
e Convexity of value function: unit commitment has to be
fixed in the first stage for all generators
e Ramping: assume away ramping constraints in order to
decompose second-stage domain by time period, Dg;

A. Papavasiliou Comparative Study of SUC and SCUC



Unit Commitment Variants
Model Scenario Selection
Decomposition Algorithms

Benders Decomposition for SUC

First-stage
subproblem

Feasibility
cut

OPFS Optian?Iity

Feasible?

@ In order to avoid stall of standard feasibility cuts
(Van-Slyke, Wets, 1969), pass entire set of power flow
equations Dg; for most severe contingency
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System
Comparison of SUC and SCUC

WECC Model

@ 130 units, 225 buses, 375 transmission lines
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System

Comparison of SUC and SCUC
Results

Unit Characteristics

Type No. of units | Capacity (MW)
Nuclear 2 4,499
Gas 94 20,595.6
Coal 6 285.9

Qil 5 252

Dual fuel 23 4,599
Import 22 12,691
Hydro 6 10,842
Biomass 3 558
Geothermal | 2 1,193
Wind (deep) | 10 14,143
Fast thermal | 88 11,006.1
Slow thermal | 42 19,225.4
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System

Comparison of SUC and SCUC
Results

Implementation

@ Lawrence Livermore National Laboratory
e 8 CPUs per node, 2.4 GHz and 10 GB per node
e MPI calling on CPLEX Java callable library

@ 30 scenarios:

e SUC: importance sampling

e SCUC: Cartesian product of ten renewable production
scenarios with no-contingency case and two most severe
contingencies (Diablo and San Onofre nuclear plants)

@ 1,000 Monte Carlo outcomes

e Spring weekdays (calibrated against NREL wind data)
e 1% generator failure probability
@ 0.1% line failure probability
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Comparison of SUC and SCUC

Results

Unit Commitment Schedules
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@ Conservative commitment of SCUC driven by assumption
that all generators are slow.
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System

Comparison of SUC and SCUC
Results

Performance

Table: Daily cost breakdown ($)

Startup | Min. load | Load shed Fuel Total
SCUC 66.5 1,205.3 0| 4,687.3 | 5,959.1
SuC 106.0 699.4 0.3 | 4,831.5 | 5,637.2

@ SCUC is more reliable, at the expense of a 5.4% cost
increase.
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System
Comparison of SUC and SCUC
Results

Running Time of Benders Decomposition

5 10 15 20 25 30
Processors

@ Algorithm converged to optimal solution in 31 iterations.
First feasible UC schedule detected in iteration 19.

@ Marginal benefits vanish beyond 15 processors. Fully
serial: 26.6 minutes. Fully parallel: 14.8 minutes.

@ Approach is not scalable as number of scenarios increases
(due to growth of first-stage subproblem).
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Comparison of SUC and SCUC

Results

Running Time of Lagrangian Decomposition
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@ Algorithm ran for 80 iterations. Lower bound: $5.868M.
Upper bound: $5.911M.

@ Marginal benefits vanish beyond 15 processors. Fully
serial: 15.8 hours. Fully parallel: 47.7 minutes.

@ Approach is scalable as number of scenarios increases.
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System

Comparison of SUC and SCUC
Results

Conclusions and Perspectives

@ Tradeoffs: The SCUC model achieves greater reliability at
the expense of a 5.4% cost increase
@ Parallelism: Lagrange relaxation algorithm benefits more
from parallelism
e Second-stage problems of SUC are more difficult to solve
o First-stage problem of SCUC is not decomposable
@ Future work: Improve feasibility cuts in Benders algorithm
in order to scale for larger number of scenarios
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Comparison of SUC and SCUC

Thank you

Questions?

Contact: anthony.papavasiliou@uclouvain.be

http://perso.uclouvain.be/anthony.papavasiliou/publications.html
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Comparison of SUC and SCUC
Results
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Comparison of SUC and SCUC
Results

Lagrangian Decomposition Algorithm

@ Past work: (Takriti et al., 1996), (Carpentier et al., 1996),
(Nowak and Rémisch, 2000), (Shiina and Birge, 2004)

@ Key idea: relax non-anticipativity constraints on both unit
commitment and startup variables

@ Balance size of subproblems
@ Obtain lower and upper bounds at each iteration

Lagrangian:
£ - Z Z Z TI'S(KgUgst + Sngst + Cgpgst)
geGseSteT

+ Z Z Z ms(pgst(Ugst — Wgt) + vgst(Vgst — Zgt))

gceGs seSteT
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