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G How to balance power systems with increasing
uncertainty driven by renewable generation?

How can machine learning provide solutions to

predict and cope with this uncertainty?

THEFRRNEEDS Implementation of a dynamic dimensioning method
for reserve capacity to balance the power system




Balancing increasing uncertainty in power systems

Imbalances result in frequency deviations, and large deviations result in protective

disconnection of generation units and loads, and eventually system black-out.

» Interconnected system: each TSO is responsible for the balance in its control zone

» Unbundled system: each market party is responsible for the balance in its portfolio

Uncertainty in Generation

*  Power plant outages

. Unforeseen variations of
renewable and sustainable
generation

CHALLENGE: Increasing shares
of (offshore) wind and
photovoltaic power

Uncertainty in Demand

Uncertainty in the Network

Unforeseen demand
variations

CHALLENGE: Electrification
of heating and mobility

fila

. Transmission line
outages

CHALLENGE: integration of
HVDC-interconnectors
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Reserve capacity for balancing the power system i isLoudin

Elia, as transmission system operator, is responsible for covering the residual system imbalances between
injection and off-take in its control zone by using reserve capacity

Elia incentivizes market players to balance their portfolio (imbalance tariffs)

- Facilitated by using day-ahead and intra-day markets / ; ; \

- Facilitated by using balancing markets (allowing the participation of new technologies for flexibility)

Elia contracts reserve capacity (to ensure availability), which is activated in real-time to cover residual imbalances

aFRR (R2): fast-response reserves to react on sudden imbalances and variations.

MFRR (R3): slower-response reserve to cover larger imbalances, and for longer periods.

Elia calculates each year the required reserve capacity needs to cover the residual imbalances :

The current ‘static’ reserve capacity dimensioning fixes the reserve capacity only once a year.

Does not recognize that risk for imbalances in the system may depend on system conditions.
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Predicting the System Imbalance Risk

. System imbalances are mainly driven by:
. Prediction risks: wind, photovoltaics, load forecast errors
. Outage risks: power plant and transmission line outages

. Market risks: ability of market players to balance their portfolio within 15’

. System imbalances are correlated with predicted system conditions (e.g. power
plant and renewable generation schedules):

. E.g. higher risk for shortages when predicting higher wind conditions

. E.g. reduced outage risks when power plants are scheduled as unavailable

. Predicting the system imbalance risk allows Elia to dimension its reserve capacity
needs to the risks of the system. This requires :

r ‘ . Mapping correlations between imbalances and predicted system conditions

N-SIDE | ° Leverage these correlations to predict system imbalance based on day-ahead
predicted system conditions
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How to size the reserve dynamically: W UCLouvain
ﬂ Power plant outage has

Risk is represented
through past system
imbalance data

RISK linked to FORCED OUTAGES RISK linked to Forecast Errors
effect on SI /

*  Considered separately as Ay
rare event for BE system
. Modelled via a “Monte
\ Carlo” simulator
\

4 4
HOW TO MAKE IT DYNAMIC?

HOW TO MAKE IT DYNAMIC?
Need to map system

Considering a variable input

. conditions (wind forecast, PV

in the Monte Carlo, e.g.: .
forecast...) to the imbalance

* DA power plant schedule sk

* HVDC interconnector

- How to map the system
conditions to system
imbalance?

DOWN UP
FRR___FRR

schedule

J

1 Approach proposed in the DRS study and proof of concept performed by ELIA with N-SIDE support
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How to map the system conditions to system imbalance?

\
Step 1: Determine features
A that drive the imbalance
= . (e.g. PV & WIND)
< o ® y
o) ® o ©

S_) ® o
> ° o°
D‘_ ° Historical measures of imbalance

() o

o o ° . '/ e.g. Sl = -25MW

S o

$ '. ° e— €.8.Sl=122MW

e.g. SI=172MW

>
Feature 1 e.g. WIND FORECAST

|\



How to map the system conditions to system imbalance?

Feature 2 e.g. PV FORECAST

e

o © i
e °
°
° o e ©
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e ®
° o°
°
°
1 °
° °
°
° ° e

>
Feature 1 e.g. WIND FORECAST

\
STATIC sizing would just
use all the data without
considering the features
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How to map the system conditions to system imbalance?

B UCLouvain
SCENARIO 1 SCENARIO 2
low wind — high PV } high wind — high PV }
A m

z (omie o) Daandy
< o © ° To make it DYNAMIC, you need to m
< ® o create “several scenarios” 833 {‘\3
cc o © o o E?'J
o
L ® o) * They represent several z N
z situations that could occur \L

ah '

(1]5 * Each scenario is associated "'i} ‘._i_-.

g with past imbalance data and “ E

§ sizing corresponding to

- predefined reliability /

— >

eature 1 e.g. WIND FORECAST,
SCENARIO 4
[ SCENARIO 3 high wind — low PV ]
low wind — low PV
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How to map the system conditions to system imbalance?

What are the issues & open This approach seems to work ... The problem is how to
qguestions with such an approach? compute these scenarios.
* Eachfeatureis splitinto 2? 3? 47?... buckets
A *  How to compute each interval?
0
< o ©® ¢ How to design a methodology to compute these parameters carefully?
v . o
e . :

% ® ¢ o © Even if an agreement is found on these parameters, how to
L>'- ¢ * automatically update them with new data (large amounts of data)?
5 ——

ab o .’ More features are needed to properly make the mapping = with this
& ® ¢ ° } basic method, the number of scenarios will grow exponentially, e.g. if
g ¢ ° @] each feature is discretized into 2 values:

*??)' ® ¢ : » 2 features = 4 scenarios

o ® ¢ * 10 features (which is reasonable) = 1024 scenarios

These are key concerns that can be
addressed with MACHINE LEARNING

11
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Machine learning offers powerful tools to carefully map the ™= nsioe

. . (function estimation)
(i.e. scenarios)

G

“KMEANS”

Feature 1

.. . UCLouvain

system conditions to imbalance -
m———=- N - “CONTINUOUS” MAPPING gate
{ N | N A !
I o | o) :
I 3 o: I = o © ° I
8| - IS
o il I I
. “KNN”
: . “Qualitative ~ :
! N - |clustering” Local grouping .. . ° :
! . e (no predefined .« o o |
L > scenarios) > I
( Feature 1 y Feature 1 :
Automatic N _ |
and smart $5 K-NN/deep learning :
“clustering” oG :
: i
i
i
i
i
i
i
i
i

Feature 2
\------------

P ———

’----
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Machine learning offers powerful tools to smartly map the === wsice

It ' UCLouvai
system conditions to imbalance I UCLouvain

DEEP LEARNING & MORE
ADVANCED APPROACHES?

Neural networks and deep learning are
powerful machine learning approaches, also
considered for dynamic dimensioning of

reserve

* However, they are

for technical reasons linked to the

methodology (i.e. the need to convolve an FE
distribution with FO distribution...)

* Though they could be applicable considering
some adaptations

* More advanced techniques relying on
hybrids of several ML algorithms are also

leveraged towards industrialization

K-NN/deep learning
(function estimation)

99.9%
.. reliability

13
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Machine learning Methodology: from Model Design to PredictioEUCLouv
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OUTPUT
theoretical ML
-1- model:

MODEL : # clusters?

Features?

DESIGN e Parameters of
the algo...

+»» Define a list of possible models

+* TRAIN & VALIDATE on historical data
(get the most out of the data)

|

TRAINING (historical data)

|

VALIDATE

14
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DATA INPUT
Historical data (>1 year) of Sl and
system features (DA forecast of
wind, PV...)

OUTPUT
theoretical ML OUTPUT

-1- model: -2- The ML model

MODEL *  #clusters? .
DESIGN * Features? TRAINING trained on past

*  Parameters of observed data
the algo...

. Up reserve = xxx
‘ ’ Scenario 1 J.L ¢ Down reserve = xxx
G Scenario 2 ee

Scenario 3 aes

[
»

Feature 2

Scenario 4 eee

Featu}e 1 Scenario 5 see
15
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Machine learning Methodology: from Model Design to Predictioauq_owclin

DATA INPUT
Historical data (>1 year) of Sl and
system features (DA forecast of
wind, PV...)

DATA INPUT
Day-ahead system conditions for
the next day

OUTPUT

theoretical ML OUTPUT
-1- model: ) ML model 3 Imbalance
MODEL °©  #clusters? T ik mode Tl risk for the
*  Features? TRAINING trained on past PREDICTION d
DESIGN *  Parameters of data next day

the algo...

For each hour of tomorrow,

o~ .

o Scenario 1 check in which cluster we are.

% Scenario 2 E.g. Tomorrow at 10am is cluster 3!

b}

Lo

. Up reserve = xxx
Orange point = forecast Scenario 3 ‘.L ¢ Down reserve = Xxx
features for next day
Scenario 4

> Scenario 5
Feature 1

16
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The timeline of the Dynamic Sizing Method

@ STATIC

DYNAMIC

Sizing for the
full year

@‘

+ Constant capacity for the entire year
» Basic computations based on observed system imbalance

Month ahead

Historical data
of system
conditions and
imbalance used
to train
algorithms for
detecting
patterns

Training Machine .
: Sizing
Learning tool

Forecasts of

Demand
Renewable
generation
Power plant
schedules
Schedule of
HVDC-cable

Day ahead

Procurement
o @I

o
5|«

DA
EG

Reserve size (upward)

Reserve size (downward)

Powering a world in progress
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|

Upward DYNAMIC sizing

base line
Oh 12h 24h

base line

Downward DYNAMIC sizing
Downward STATIC sizing

18
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Week 24 September — 30 September

Upward Reserve Downward Reserve
1700 1600
1650
1500
1600
'
1550 . 1400 - — ' ;
Static ! 3 i _y1 Static
1500 il i i 1 ) down
1450 up, 100 g3 by |
- -_! o ! - - ! .
1400 < 1200 | ::"". ‘:’ T :."' ~1%e, ,..: '1_: :."
1350 - s“' La - - -1 - o
1300 1100
1250 1000
240916 2509.16 2609.16 27.09.16 2809.16 2909.16 3009.16 011016 2409.16 250916 2609.16 27.09.16 2809.16 29.09.16 3009.16 0110.16
13000 Forecasted Load <« Max load ;
4000 . Max Wind
Forecasted Wind <
11000
2000
9000
7000 0

240816 250916 26.09.16 27.09.16 2809.16 2908.16 3008.16 0110.16 2408.16 25.09.16 26.09.16 27.05.16 2809.16 2909.16 30.09.16 0110.16

Forecasted PV

2000 4 Max PV

Nemo Import Volume to be covered

T e f\/\/\/\/\/\/x

0 24.09.16 2509.16 2609.16 2709.16 2809.16 290916 3009.16 0110.16
2409.16 2509.16 2609.16 27.09.16 2809.16 2909.16 3009.16 01.10.16 -1000

19



Cumulative density function of upward and downward reserves

Upward FRR needs [MW]
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1700 1700

1600 1600

1500 = 1500

Gy e 2 1400
1400 "
p=

1300 9 1300

1200 & 1200
L

1100 e 1100
:'P

1000 § 1000

900 S 900

800 800

700 700

00

KMEANS

KNN

KMEANS

00 serunnees STATIC

e 80-85% of the time, ML methods below the static requirement
* Downward reserve requirements below 1 GW only 2.5% of the time
* k-means and KNN quite close, but still occasional differences in peak requirements

20
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Smooth spread of risk in dynamic sizing methods

Comparison of the KMEANS, KNN and static methods on their reliability level and corresponding FRR needs for the high and low risk periods.

KMEANS KNN

Static (Reliability, FRRneed) KMEANS (Reliability, FREneed) Static (Reliability FRRneed) KNN (Reliability, FRRneed)

UPWARD FRE NEEDS High Risk 90.86%; 1417 MW 99.89%; 1457 MW 990.84%; 1417 MW 99.84%; 1463 MW
Low Risk 99.96%; 1417 MW 99.91%; 1304 MW 99.96%; 1417 MW 99.91%; 1271 MW
DOWNWARD FRR NEEDS High Risk 90.87%; 1251 MW 99.90%; 1362 MW 99.96%; 1251 MW 99.98%; 1384 MW
Low Risk 99.97%; 1251 MW 99.89%; 1053 MW 99.97%; 1251 MW 99.92%; 1025 MW

* All methods are seeking to achieve a reliability of 99.9% reliability on average
» Definition of low/high-risk periods: periods with lowest/highest 20% reserve capacity
» Static sizing tends to over-insure in low-risk periods, under-insure in high-risk periods



Sizing results for 2020

Average, minimum, maximum reserve requirements, dynamic potential (A) and

dynamic spread (expressed in MW).

Upward Downward

Avg Max Min A Spread Avg Max Min A Spread
STAT 1417 - - 1251 - -
EMEANS 1365 1lele 1270 52 346 1204 1593 794 47 799
KNN 1353 16le 1208 &4 407 1205 1693 698 46 995
00 1387 1418 1364 30 53 1237 1252 1140 14 112

“%lia ;
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* Potential of dynamic sizing to reduce requirements is
robust to ability of market players to forecast

* Lower ability of market player to control imbalances =>
greater benefits of dynamic sizing

Average, minimum, maximum reserve needs, dynamic potential (A) and dynamic spread (expressed in MW) for the high and low 2020 scenarios.

Upward Downward
Avg Max Min A Spread Avg Max Min A Spread
High scenario STAT 1364 - - 1180 - -
EMEANS 1325 1473 1243 39 230 1141 1390 715 38 675
ENN 1318 1491 1190 46 301 1145 1527 628 35 899
00 1339 1364 1320 25 45 1160 1181 1027 20 154
Low scenarlo STAT 1564 - - 1426 - -
EMEANS 1471 1971 1325 a3 647 1356 1710 960 70 750
EKNN 1436 1977 1245 128 731 1362 2031 844 64 1187
00 1546 1565 1532 18 33 1420 1427 1377 6 50

22



—EHa J

n-RiRE

Sizing results for 2027 FHESOE

Powering a world in progress

Average, minimum, maximum reserve needs, dynamic potential (A) and dynamic spread (expressed in MW) for the post-nuclear 2027scenario.

[MW] Upward Downward

Avg Max Min A Spread Avg Max Min A Spread
STAT 1284 - - 1340 - -
KMEANS 1186 1534 005 08 629 1286 1700 866 54 834
ENN 1160 1532 793 124 739 1286 1778 841 54 937
00 1253 1284 1205 31 78 1327 1340 1272 13 67

e Post-nuclear system requires fewer reserves
* Benetis of dynamic sizing persist
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Proof of Concept on 2020 and 2027 shows

* Better management of reliability with higher FRR requirements during higher-risk periods
* Financial gains following reductions in average FRR requirements (outweighing the implementation costs)
* Arobust methodology towards the middle and long-term system with more uncertainty driven by renewables

» With increasing advantages under higher share of renewable generation in 2027

The method is adaptive The method is transparent The method is robust
Methods and interfaces allow system
operators (real-time) and stakeholders (ex
post) to accept the results by
understanding how the results are
obtained.

Advantages of the method increase in
power systems with larger renewable
generation penetration and in a context
without nuclear generation.

Trends in the system (better or worse
performance of BRPs in terms of
balancing) will immediately impact the
future reserve needs.
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Conclusions

» Power system operations face increasing uncertainty with large-scale integration

of new technologies

» Machine learning can help in capturing this system behavior, and allowing system

operators to better cope with these evolutions

* Efficiency: reducing average reserve capacity

* Reliability: ensuring adequate reserve capacity during high needs DYNAMIC DIMENSIONING OF
y g adeq pacity gnNig THE FRR NEEDS

* Sustainability: facilitating the integration of renewable energy

31/10/2017

» Eliais pursuing implementation of this method towards 2020, while further
investigating the potential applications of machine learning in system operations.

Proof of Concept : www.elia.be > users’
group > working group balancing >
projects and publications
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