

Dynamic Dimensioning of Balancing Reserves with Machine Learning Algorithms

Anthony Papavasiliou, Associate Professor, UCLouvain

Kristof De Vos, System Services Manager, Elia System Operator

Olivier Devolder, Head of Energy Group, N-SIDE

Powering a world in progress

Agenda

DYNAMIC DIMENSIONING OF THE FRR NEEDS

31/10/2017

How to balance power systems with increasing uncertainty driven by renewable generation?

How can machine learning provide solutions to predict and cope with this uncertainty?

Implementation of a dynamic dimensioning method for reserve capacity to balance the power system

Balancing increasing uncertainty in power systems

- Imbalances result in frequency deviations, and large deviations result in protective disconnection of generation units and loads, and eventually system black-out.
 - > Interconnected system: each TSO is responsible for the balance in its control zone
 - > Unbundled system: each market party is responsible for the balance in its portfolio

Uncertainty in Generation

- Power plant outages
- Unforeseen variations of renewable and sustainable generation

CHALLENGE: Increasing shares of (offshore) wind and photovoltaic power

Uncertainty in Demand

- Unforeseen demand variations
- CHALLENGE: Electrification of heating and mobility

Uncertainty in the Network

• Transmission line outages

CHALLENGE: integration of HVDC-interconnectors

Reserve capacity for balancing the power system

Elia, as transmission system operator, is responsible for covering the residual system imbalances between injection and off-take in its control zone by using reserve capacity

Elia incentivizes market players to balance their portfolio (imbalance tariffs)

- Facilitated by using day-ahead and intra-day markets
- Facilitated by using balancing markets (allowing the participation of new technologies for flexibility)

Elia contracts reserve capacity (to ensure availability), which is activated in real-time to cover residual imbalances

- aFRR (R2): fast-response reserves to react on sudden imbalances and variations.
- **mFRR (R3):** slower-response reserve to cover larger imbalances, and for longer periods.

Elia calculates each year the required reserve capacity needs to cover the residual imbalances :

- The current 'static' reserve capacity dimensioning fixes the reserve capacity only once a year.
- Does not recognize that risk for imbalances in the system may depend on system conditions.

Predicting the System Imbalance Risk

• System imbalances are mainly driven by:

.

N-SIDE

- Prediction risks: wind, photovoltaics, load forecast errors
- **Outage risks:** power plant and transmission line outages
- Market risks: ability of market players to balance their portfolio within 15'
- System imbalances are correlated with predicted system conditions (e.g. power plant and renewable generation schedules):
 - E.g. higher risk for shortages when predicting higher wind conditions
 - E.g. reduced outage risks when power plants are scheduled as unavailable
- Predicting the system imbalance risk allows Elia to dimension its reserve capacity needs to the risks of the system. This requires :
 - Mapping correlations between imbalances and predicted system conditions
 - Leverage these correlations to predict system imbalance based on day-ahead predicted system conditions

Agenda

DYNAMIC DIMENSIONING OF THE FRR NEEDS

31/10/2017

How to balance power systems with increasing uncertainty driven by renewable generation?

How can machine learning provide solutions to predict and cope with this uncertainty?

Implementation of a dynamic dimensioning method for reserve capacity to balance the power system

How to size the reserve dynamically?¹

What are the issues & open questions with such an approach?

This approach seems to work **qualitatively**... The problem is how to **quantitatively** compute these scenarios.

- Each feature is split into 2? 3? 4?... buckets
- How to compute each interval?

How to design a methodology to compute these parameters carefully?

Even if an agreement is found on these parameters, how to **automatically update them with new data** (large amounts of data)?

More features are needed to properly make the mapping \rightarrow with this basic method, the number of scenarios will grow exponentially, e.g. if each feature is discretized into 2 values:

- 2 features \rightarrow 4 scenarios
- 10 features (which is reasonable) ightarrow 1024 scenarios

These are key concerns that can be addressed with MACHINE LEARNING

Machine learning offers powerful tools to carefully map the ^{Powering aworld in progress} system conditions to imbalance

Machine learning offers powerful tools to smartly map the system conditions to imbalance

DEEP LEARNING & MORE ADVANCED APPROACHES?

Feature

Automatic

and smart

٠

- Neural networks and deep learning are powerful machine learning approaches, also considered for dynamic dimensioning of reserve
- However, they are not the most suited for this application for technical reasons linked to the methodology (i.e. the need to convolve an FE distribution with FO distribution...)
- Though they could be applicable considering some adaptations
- More **advanced techniques** relying on **hybrids** of several ML algorithms are also leveraged towards industrialization

Machine learning Methodology: from Model Design to Prediction

elia

N-SIDE

Agenda

DYNAMIC DIMENSIONING OF THE FRR NEEDS

31/10/2017

How to balance power systems with increasing uncertainty driven by renewable generation?

How can machine learning provide solutions to predict and cope with this uncertainty?

Implementation of a dynamic dimensioning method for reserve capacity to balance the power system

The timeline of the Dynamic Sizing Method

Example week

Cumulative density function of upward and downward reserves UCLouvain

- 80-85% of the time, ML methods below the static requirement
- Downward reserve requirements below 1 GW only 2.5% of the time
- k-means and KNN quite close, but still occasional differences in peak requirements

Smooth spread of risk in dynamic sizing methods

Comparison of the KMEANS, KNN and static methods on their reliability level and corresponding FRR needs for the high and low risk periods.

		KMEANS		KNN						
		Static (Reliability, FRRneed)	KMEANS (Reliability, FRRneed)	Static (Reliability FRRneed)	KNN (Reliability, FRRneed)					
UPWARD FRR NEEDS	High Risk Low Risk High Risk	99.86%; 1417 MW 99.96%; 1417 MW 99.87%; 1251 MW	99.89%; 1457 MW 99.91%; 1304 MW 99.90%; 1362 MW	99.84%; 1417 MW 99.96%; 1417 MW 99.96%; 1251 MW	99.84%; 1463 MW 99.91%; 1271 MW 99.98%: 1384 MW					
Downing Flat MEEDS	Low Risk	99.97%; 1251 MW	99.89%; 1053 MW	99.97%; 1251 MW	99.92%; 1025 MW					

- All methods are seeking to achieve a reliability of **99.9% reliability** on average
- Definition of low/high-risk periods: periods with lowest/highest 20% reserve capacity
- Static sizing tends to over-insure in low-risk periods, under-insure in high-risk periods

Sizing results for 2020

Average, minimum, maximum reserve requirements, dynamic potential (Δ) and dynamic spread (expressed in MW).

	Upwa	rd				Downward							
	Avg	Max	Min	Δ	Spread	Avg	Max	Min	Δ	Spread			
STAT KMEANS KNN OO	1417 1365 1353 1387	1616 1616 1418	1270 1208 1364	- 52 64 30	- 346 407 53	1251 1204 1205 1237	1593 1693 1252	794 698 1140	- 47 46 14	- 799 995 112			

- Potential of dynamic sizing to reduce requirements is robust to ability of market players to forecast
- Lower ability of market player to control imbalances => greater benefits of dynamic sizing

			1			643				1	·	N 6	.1 1		1 7	0000	
Average	minimiim	maximiim	reserve needs	dynamic	potential	(Λ)	and	Ivnamic	spread	levnressed	1n VIVV	1 tor	the h	σh and	1 100	2020	scenarios
riverage,	mmmmun,	maximum	reserve needs,	aynamic	potentiai		and	aynamic	spread	(CAPICOSCU	111 101 00	, 101	uic na	gn and	1 10 11	2020	section.

		Upward			Downward						
		Avg	Max	Min	Δ	Spread	Avg	Max	Min	Δ	Spread
High scenario	STAT	1364			_	_	1180			_	_
	KMEANS	1325	1473	1243	39	230	1141	1390	715	38	675
	KNN	1318	1491	1190	46	301	1145	1527	628	35	899
	00	1339	1364	1320	25	45	1160	1181	1027	20	154
Low scenario	STAT	1564			-	-	1426			-	-
	KMEANS	1471	1971	1325	93	647	1356	1710	960	70	750
	KNN	1436	1977	1245	128	731	1362	2031	844	64	1187
	00	1546	1565	1532	18	33	1420	1427	1377	6	50

Sizing results for 2027

[MW]	Upward				Downward	Downward						
	Avg	Max	Min	Δ	Spread	Avg	Max	Min	Δ	Spread		
STAT	1284	1534	005	-	-	1340	1700	866	-	-		
KNN OO	1160 1253	1532 1284	793 1205	124 31	739 78	1286 1327	1700 1778 1340	841 1272	54 13	937 67		

Average, minimum, maximum reserve needs, dynamic potential (Δ) and dynamic spread (expressed in MW) for the *post-nuclear 2027* scenario.

- Post-nuclear system requires fewer reserves
- Benetis of dynamic sizing persist

Proof of Concept on 2020 and 2027 shows

- Better management of reliability with higher FRR requirements during higher-risk periods
- Financial gains following reductions in average FRR requirements (outweighing the implementation costs)
- A robust methodology towards the middle and long-term system with more uncertainty driven by renewables
 - With increasing advantages under higher share of renewable generation in 2027

The method is adaptive

Trends in the system (better or worse performance of BRPs in terms of balancing) will immediately impact the future reserve needs.

The method is transparent

Methods and interfaces allow system operators (real-time) and stakeholders (ex post) to accept the results by understanding how the results are obtained.

The method is robust

Advantages of the method increase in power systems with larger renewable generation penetration and in a context without nuclear generation.

Conclusions

Power system operations face increasing uncertainty with large-scale integration of new technologies

- Machine learning can help in capturing this system behavior, and allowing system operators to better cope with these evolutions
 - Efficiency: reducing average reserve capacity
 - **Reliability**: ensuring adequate reserve capacity during high needs
 - **Sustainability**: facilitating the integration of renewable energy
- Elia is pursuing implementation of this method towards 2020, while further investigating the potential applications of machine learning in system operations.

DYNAMIC DIMENSIONING OF THE FRR NEEDS

31/10/2017

Proof of Concept : www.elia.be > users'
group > working group balancing >
projects and publications