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Agenda

How to balance power systems with increasing 
uncertainty driven by renewable generation?

How can machine learning provide solutions to 
predict and cope with this uncertainty?

Implementation of a dynamic dimensioning method 
for reserve capacity to balance the power system



• Imbalances result in frequency deviations, and large deviations result in protective 

disconnection of generation units and loads, and eventually system black-out.

 Interconnected system: each TSO is responsible for the balance in its control zone

 Unbundled system: each market party is responsible for the balance in its portfolio

Balancing increasing uncertainty in power systems

∑Pload = ∑Pgeneration

• Power plant outages

• Unforeseen variations of 
renewable and sustainable 
generation

CHALLENGE: Increasing shares 
of (offshore) wind and 
photovoltaic power

• Unforeseen demand 
variations

CHALLENGE: Electrification 
of heating and mobility

Uncertainty in Generation Uncertainty in Demand

• Transmission line 
outages

CHALLENGE: integration of 
HVDC-interconnectors

Uncertainty in the Network



Elia incentivizes market players to balance their portfolio (imbalance tariffs)

- Facilitated by using day-ahead and intra-day markets

- Facilitated by using balancing markets (allowing the participation of new technologies for flexibility)

Elia contracts reserve capacity (to ensure availability), which is activated in real-time to cover residual imbalances 

• aFRR (R2): fast-response reserves to react on sudden imbalances and variations. 

• mFRR (R3): slower-response reserve to cover larger imbalances, and for longer periods.  

Elia calculates each year the required reserve capacity needs to cover the residual imbalances : 

• The current ‘static’  reserve capacity dimensioning fixes the reserve capacity only once a year. 

• Does not recognize that risk for imbalances in the system may depend on system conditions. 

Reserve capacity for balancing the power system

Elia, as transmission system operator, is responsible for covering the residual system imbalances between 
injection and off-take in its control zone by using reserve capacity

https://www.google.be/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwij67H7xYbXAhVRJlAKHUgyCkgQjRwIBw&url=https://www.iconfinder.com/icons/171352/calculator_icon&psig=AOvVaw3U4bna469JwMbWgiWTX17-&ust=1508841289594055


• System imbalances are mainly driven by:

• Prediction risks: wind, photovoltaics, load forecast errors

• Outage risks: power plant and transmission line outages

• Market risks: ability of market players to balance their portfolio within 15’

• System imbalances are correlated with predicted system conditions  (e.g. power 
plant and renewable generation schedules):

• E.g. higher risk for shortages when predicting higher wind conditions

• E.g. reduced outage risks when power plants are scheduled as unavailable

• Predicting the system imbalance risk allows Elia to dimension its reserve capacity 
needs to the risks of the system. This requires :

• Mapping correlations between imbalances and predicted system conditions

• Leverage these correlations to predict system imbalance based on day-ahead 
predicted system conditions

Predicting the System Imbalance Risk
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How to size the reserve dynamically?1

RISK linked to FORCED OUTAGES RISK linked to Forecast Errors

UP
FRR

DOWN
FRR

• Power plant outage has 
effect on SI

• Considered separately as 
rare event for BE system

• Modelled via a “Monte 
Carlo” simulator

HOW TO MAKE IT DYNAMIC?
Considering a variable input 
in the Monte Carlo, e.g.:
• DA power plant schedule
• HVDC interconnector 

schedule
• …

HOW TO MAKE IT DYNAMIC? 
Need to map system 

conditions (wind forecast, PV 
forecast…) to the imbalance 

risk…
 How to map the system 

conditions to system 
imbalance?

Risk is represented 
through past system 
imbalance data

1 Approach proposed in the DRS study and  proof of concept performed by ELIA with N-SIDE support  
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How to map the system conditions to system imbalance?

Feature 1 e.g. WIND FORECAST

Step 1: Determine features 
that drive the imbalance 
(e.g. PV & WIND)

Historical measures of imbalance

e.g. SI = -25MW

e.g. SI = 122MW

e.g. SI = 172MW
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How to map the system conditions to system imbalance?

Feature 1 e.g. WIND FORECAST
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STATIC sizing would just 
use all the data without 
considering the features
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How to map the system conditions to system imbalance?

Feature 1 e.g. WIND FORECAST
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SCENARIO 2
high wind – high PV

SCENARIO 1
low wind – high PV

SCENARIO 3
low wind – low PV

SCENARIO 4
high wind – low PV

To make it DYNAMIC, you need to 
create “several scenarios”

• They represent several 
situations that could occur

• Each scenario is associated 
with past imbalance data and 
sizing corresponding to 
predefined reliability
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How to map the system conditions to system imbalance?

Feature 1 e.g. WIND FORECAST
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This approach seems to work qualitatively… The problem is how to 
quantitatively compute these scenarios.

• Each feature is split into 2? 3? 4?... buckets
• How to compute each interval?

How to design a methodology to compute these parameters carefully?

Even if an agreement is found on these parameters, how to 
automatically update them with new data (large amounts of data)?

More features are needed to properly make the mapping  with this 
basic method, the number of scenarios will grow exponentially, e.g. if 
each feature is discretized into 2 values:

• 2 features  4 scenarios
• 10 features (which is reasonable)  1024 scenarios

These are key concerns that can be 
addressed with MACHINE LEARNING

What are the issues & open 
questions with such an approach?
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“DISCRETE” MAPPING

“Qualitative 
clustering”

“KMEANS”

“KNN”

K-NN/deep learning 
(function estimation)

Feature 1
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Automatic 
and smart 
“clustering” 
(i.e. scenarios)

“CONTINUOUS” MAPPING

Local grouping 
(no predefined 
scenarios)

Machine learning offers powerful tools to carefully map the 
system conditions to imbalance 
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Automatic 
and smart 
“clustering
” (i.e. 

scenarios)

“CONTINUOUS” MAPPING

Local 
grouping (no 
predefined 
scenarios)

Machine learning offers powerful tools to smartly map the 
system conditions to imbalance 

• Neural networks and deep learning are 
powerful machine learning approaches, also 
considered for dynamic dimensioning of 
reserve

• However, they are not the most suited for this 
application for technical reasons linked to the 
methodology (i.e. the need to convolve an FE 
distribution with FO distribution…)

• Though they could be applicable considering 
some adaptations

• More advanced techniques relying on 
hybrids of several ML algorithms are also 
leveraged towards industrialization

DEEP LEARNING & MORE 
ADVANCED APPROACHES?
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Machine learning Methodology: from Model Design to Prediction

- 1 -
MODEL 
DESIGN

OUTPUT
theoretical ML 

model:
• # clusters?
• Features?
• Parameters of 

the algo…

MODEL 1

MODEL 2

MODEL 3

MODEL N

…

KPI 1 KPI k… Define a list of possible models
 TRAIN & VALIDATE on historical data 

(get the most out of the data)
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Feature 1
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- 1 -
MODEL 
DESIGN

OUTPUT
theoretical ML 

model:
• # clusters?
• Features?
• Parameters of 

the algo…

- 2 -
TRAINING

OUTPUT
The ML model 
trained on past 
observed data

DATA INPUT
Historical data (>1 year) of SI and 
system features (DA forecast of 

wind, PV…)

…    

…    
…    

Scenario 2

Scenario 1

Scenario 3

Scenario 4

Scenario 5

…    

Up reserve = xxx
Down reserve = xxx

Machine learning Methodology:  from Model Design to Prediction
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- 1 -
MODEL 
DESIGN

OUTPUT
theoretical ML 

model:
• # clusters?
• Features?
• Parameters of 

the algo…

- 2 -
TRAINING

OUTPUT
ML model 

trained on past 
data

- 3 -
PREDICTION

Imbalance 
risk for the 

next day

DATA INPUT
Historical data (>1 year) of SI and 
system features (DA forecast of 

wind, PV…)

DATA INPUT
Day-ahead system conditions for 

the next day

Feature 1

F
e
a
tu

re
 2

For each hour of tomorrow, 
check in which cluster we are.
E.g. Tomorrow at 10am is cluster 3!

Scenario 1

Scenario 2

Scenario 4

Scenario 5

Scenario 3 Up reserve = xxx
Down reserve = xxxOrange point = forecast 

features for next day

Machine learning Methodology:  from Model Design to Prediction
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The timeline of the Dynamic Sizing Method
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Day aheadMonth ahead

Training Machine 

Learning tool

Year ahead

S
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A
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IC

D Day
DA 

market

Procurement

Historical data 

of system 

conditions and  

imbalance used 

to train 

algorithms for 

detecting 

patterns

Forecasts of

• Demand

• Renewable 

generation

• Power plant 

schedules

• Schedule of 

HVDC-cable

• Constant capacity for the entire year

• Basic computations based on observed system imbalance

Sizing

Sizing for the 
full year

Advanced 

methodology 

based on

MACHINE 

LEARNING



Example week
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Cumulative density function of upward and downward reserves
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• 80-85% of the time, ML methods below the static requirement
• Downward reserve requirements below 1 GW only 2.5% of the time
• k-means and KNN quite close, but still occasional differences in peak requirements



Smooth spread of risk in dynamic sizing methods
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• All methods are seeking to achieve a reliability of 99.9% reliability on average
• Definition of low/high-risk periods: periods with lowest/highest 20% reserve capacity
• Static sizing tends to over-insure in low-risk periods, under-insure in high-risk periods



Sizing results for 2020
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• Potential of dynamic sizing to reduce requirements is 
robust to ability of market players to forecast 

• Lower ability of market player to control imbalances => 
greater benefits of dynamic sizing



Sizing results for 2027
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• Post-nuclear system requires fewer reserves
• Benetis of dynamic sizing persist



• Better management of reliability with higher FRR requirements during higher-risk periods

• Financial gains following reductions in average FRR requirements (outweighing the implementation costs)

• A robust methodology towards the middle and long-term system with more uncertainty driven by renewables

 With increasing advantages under higher share of renewable generation in 2027

Proof of Concept on 2020 and 2027 shows
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The method is adaptive

Trends in the system (better or worse 
performance of BRPs in terms of 

balancing) will immediately impact the 
future reserve needs.

The method is transparent

Methods and interfaces allow system 
operators (real-time) and stakeholders (ex 

post) to accept the results by 
understanding how the results are 

obtained.

The method is robust

Advantages of the method increase in 
power systems with larger renewable 

generation penetration and in a context 
without nuclear generation.



Conclusions
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Proof of Concept : www.elia.be > users’ 
group > working group balancing > 
projects and publications

 Power system operations face increasing uncertainty with large-scale integration 

of new technologies  

 Machine learning can help in capturing this system behavior, and allowing system 

operators to better cope with these evolutions

• Efficiency: reducing average reserve capacity 

• Reliability: ensuring adequate reserve capacity during high needs

• Sustainability: facilitating the integration of renewable energy

 Elia is pursuing implementation of this method towards 2020, while further 

investigating the potential applications of machine learning in system operations.

http://www.elia.be/

