Large-Scale Integration of Deferrable Demand and Renewable Energy in Power Systems

Anthony Papavasiliou

Department of Industrial Engineering and Operations Research U.C. Berkeley, U.S.A.

Joint work with Prof. Shmuel Oren (IEOR, U.C. Berkeley) Dr. Richard P. O'Neill (FERC)

February 16th, 2012

Outline

Introduction

2 Methodology

- Unit Commitment Model
- Decomposition and Scenario Selection
- Wind Model

3 Results

Renewables Making Headlines

EU Parliament hears Helios Project

🖌 briddaer Fred State and

control from top on table is the terms way under the Control of the court the financing of Project the loss of 20 billion sum index energy data. Recompared the descent of the line Weather requirement three and on the entities 21.

Populoritar directively Add. DJ convolutioners became the analyzer patients and device devices of programs that if the 12 data materials, the device head of the 12 data investor devices. In the three of the popular investor devices. In the three of the popular investor devices and out in a patient patient of the January Analyzer.

The endermanian initially take the process coupling the fact of points and cohered by managements of the Packet for Strategies

A. Papavasiliou

Germany: Nuclear power plants to close by 2022

COMMENTS (542)

U.C. Berkeley

3emany saw mass anti-nuclear protests in the wake of the Fukushima fisaster

Sermany's coalition government has announced a reversal of solicy that will see all the country's nuclear power plants phased sut by 2022.

Related Stories

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Uncertainty

Variability

A. Papavasiliou U.C. Berkeley

A Vision for Renewable Energy

Load Flexibility

Research Objective

Want to quantify:

- Renewable energy utilization
- Cost of unit commitment and economic dispatch
- Capital investment in generation capacity

Stochastic unit commitment an appropriate model:

- Quantifies renewable energy utilization (decision variable)
- Quantifies operating costs (objective function)
- Endogenously determines reserves (as opposed to ad hoc rules)

Unit Commitment

• Objective: min $\sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$

- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P_g^- u_{gt} \le p_{gt} \le P_g^+ u_{gt}, \forall g, t$
- Ramping limits: $-R_g^- \le p_{gst} p_{gs,t-1} \le R_g^+, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \le u_{gt}, \forall g, t \ge UT_g$
- Min down times: $\sum_{q=t+1}^{t+DT_g} v_{gq} \le 1 u_{gt}, \forall g, t \le N DT_g$
- State transition: $v_{gt} \ge u_{gt} u_{g,t-1}, \forall g, t$
- Integrality: v_{gt} , $u_{gt} \in \{0, 1\}, \forall g, t$
- Transmission line thermal constraints
- Kirchhoff voltage/current laws

Unit Commitment

- Objective: min $\sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$
- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P_g^- u_{gt} \le p_{gt} \le P_g^+ u_{gt}, \forall g, t$
- Ramping limits: $-R_g^- \le p_{gst} p_{gs,t-1} \le R_g^+, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \le u_{gt}, \forall g, t \ge UT_g$
- Min down times: $\sum_{q=t+1}^{t+DT_g} v_{gq} \le 1 u_{gt}, \forall g, t \le N DT_g$
- State transition: $v_{gt} \ge u_{gt} u_{g,t-1}, \forall g, t$
- Integrality: v_{gt} , $u_{gt} \in \{0, 1\}, \forall g, t$
- Transmission line thermal constraints
- Kirchhoff voltage/current laws

Unit Commitment

- Objective: min $\sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$
- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P_g^- u_{gt} \le p_{gt} \le P_g^+ u_{gt}, \forall g, t$
- Ramping limits: $-R_g^- \le p_{gst} p_{gs,t-1} \le R_g^+, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \le u_{gt}, \forall g, t \ge UT_g$
- Min down times: $\sum_{q=t+1}^{t+DT_g} v_{gq} \le 1 u_{gt}, \forall g, t \le N DT_g$
- State transition: $v_{gt} \ge u_{gt} u_{g,t-1}, \forall g, t$
- Integrality: v_{gt} , $u_{gt} \in \{0, 1\}, \forall g, t$
- Transmission line thermal constraints
- Kirchhoff voltage/current laws

Unit Commitment

- Objective: min $\sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$
- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P_g^- u_{gt} \le p_{gt} \le P_g^+ u_{gt}, \forall g, t$
- Ramping limits: $-R_g^- \le p_{gst} p_{gs,t-1} \le R_g^+, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \le u_{gt}, \forall g, t \ge UT_g$
- Min down times: $\sum_{q=t+1}^{t+DT_g} v_{gq} \le 1 u_{gt}, \forall g, t \le N DT_g$
- State transition: $v_{gt} \ge u_{gt} u_{g,t-1}, \forall g, t$
- Integrality: v_{gt} , $u_{gt} \in \{0, 1\}, \forall g, t$
- Transmission line thermal constraints
- Kirchhoff voltage/current laws

Unit Commitment

- Objective: min $\sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$
- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P_g^- u_{gt} \le p_{gt} \le P_g^+ u_{gt}, \forall g, t$
- Ramping limits: $-R_g^- \le p_{gst} p_{gs,t-1} \le R_g^+, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \le u_{gt}, \forall g, t \ge UT_g$
- Min down times: $\sum_{q=t+1}^{t+DT_g} v_{gq} \le 1 u_{gt}, \forall g, t \le N DT_g$
- State transition: $v_{gt} \ge u_{gt} u_{g,t-1}, \forall g, t$
- Integrality: $v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t$
- Transmission line thermal constraints
- Kirchhoff voltage/current laws

Unit Commitment

- Objective: min $\sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$
- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P_g^- u_{gt} \le p_{gt} \le P_g^+ u_{gt}, \forall g, t$
- Ramping limits: $-R_g^- \le p_{gst} p_{gs,t-1} \le R_g^+, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g$
- Min down times: $\sum_{q=t+1}^{t+DT_g} v_{gq} \le 1 u_{gt}, \forall g, t \le N DT_g$
- State transition: $v_{gt} \ge u_{gt} u_{g,t-1}, \forall g, t$
- Integrality: v_{gt} , $u_{gt} \in \{0, 1\}, \forall g, t$
- Transmission line thermal constraints
- Kirchhoff voltage/current laws

Unit Commitment

- Objective: min $\sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$
- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P_g^- u_{gt} \le p_{gt} \le P_g^+ u_{gt}, \forall g, t$
- Ramping limits: $-R_g^- \le p_{gst} p_{gs,t-1} \le R_g^+, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g$
- Min down times: $\sum_{q=t+1}^{t+DT_g} v_{gq} \le 1 u_{gt}, \forall g, t \le N DT_g$
- State transition: $v_{gt} \ge u_{gt} u_{g,t-1}, \forall g, t$
- Integrality: v_{gt} , $u_{gt} \in \{0, 1\}, \forall g, t$
- Transmission line thermal constraints
- Kirchhoff voltage/current laws

Unit Commitment

- Objective: min $\sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$
- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P_g^- u_{gt} \le p_{gt} \le P_g^+ u_{gt}, \forall g, t$
- Ramping limits: $-R_g^- \le p_{gst} p_{gs,t-1} \le R_g^+, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g$
- Min down times: $\sum_{q=t+1}^{t+DT_g} v_{gq} \le 1 u_{gt}, \forall g, t \le N DT_g$
- State transition: $v_{gt} \ge u_{gt} u_{g,t-1}, \forall g, t$
- Integrality: v_{gt} , $u_{gt} \in \{0, 1\}, \forall g, t$
- Transmission line thermal constraints
- Kirchhoff voltage/current laws

Unit Commitment

- Objective: min $\sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$
- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P_g^- u_{gt} \le p_{gt} \le P_g^+ u_{gt}, \forall g, t$
- Ramping limits: $-R_g^- \le p_{gst} p_{gs,t-1} \le R_g^+, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g$
- Min down times: $\sum_{q=t+1}^{t+DT_g} v_{gq} \le 1 u_{gt}, \forall g, t \le N DT_g$
- State transition: $v_{gt} \ge u_{gt} u_{g,t-1}, \forall g, t$
- Integrality: v_{gt} , $u_{gt} \in \{0, 1\}, \forall g, t$
- Transmission line thermal constraints
- Kirchhoff voltage/current laws

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Unit Commitment

- Objective: min $\sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$
- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P_g^- u_{gt} \le p_{gt} \le P_g^+ u_{gt}, \forall g, t$
- Ramping limits: $-R_g^- \le p_{gst} p_{gs,t-1} \le R_g^+, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g$
- Min down times: $\sum_{q=t+1}^{t+DT_g} v_{gq} \le 1 u_{gt}, \forall g, t \le N DT_g$
- State transition: $v_{gt} \ge u_{gt} u_{g,t-1}, \forall g, t$
- Integrality: v_{gt} , $u_{gt} \in \{0, 1\}, \forall g, t$
- Transmission line thermal constraints
- Kirchhoff voltage/current laws

The Real Thing

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

- 1,210 generators, 3 part offers (startup, no load, 10 segment incremental energy offer curve)
- 10,000 Demand bids fixed or price sensitive
- 50,000 Virtual bids / offers
- 8,700 eligible bid/offer nodes (pricing nodes)
- 6,125 monitored transmission elements
- · 10,000 transmission contingencies modeled

Relevant Literature

- Wind integration studies based on stochastic unit commitment: (Bouffard and Galiana, 2008), (Wang, Shahidehpour et al., 2008), (Ruiz, Philbrick et al., 2009), (Tuohy, Meibom et al., 2009), (Morales, Conejo et al., 2009), (Constantinescu, Zavala et al., 2011)
- Wind / price-responsive demand study based on deterministic unit commitment: (Sioshansi and Short, 2009)
- Deferrable demand response study based on deterministic unit commitment: (Sioshansi, 2011)

Validation Process

Unit Commitment Model Decomposition and Scenario Selection Wind Model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Unit Commitment and Economic Dispatch

- Deterministic model (Sioshansi and Short, 2009)
 - Reserve requirements

$$\sum_{g \in G} oldsymbol{s}_{gt} + \sum_{g \in G_f} oldsymbol{f}_{gt} \geq oldsymbol{T}^{ ext{req}}_t, \sum_{g \in G_f} oldsymbol{f}_{gt} \geq oldsymbol{F}^{ ext{req}}_t, t \in oldsymbol{T}$$

Import constraints

$$\sum_{l \in \textit{IG}_j} \gamma_{jl} \boldsymbol{e}_{lt} \leq \textit{IC}_j, j \in \mathcal{IG}, t \in \textit{T}$$

 Slow generator schedules are fixed in economic dispatch model: w_{gt} = w^{*}_{gt}, g ∈ G_s

Unit Commitment Model Decomposition and Scenario Selection Wind Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Two-Stage Stochastic Unit Commitment

- In the first stage we commit slow generators: u_{gst} = w_{gt}, v_{gst} = z_{gt}, g ∈ G_s, s ∈ S, t ∈ T (corresponds to day-ahead market)
- 2 Uncertainty is revealed: net demand D_{nst} , line availability B_{ls} , generator availability P_{gs}^+ , P_{gs}^-
- Second stage decisions: u_{gst}, g ∈ G_f and p_{gst}, g ∈ G_f ∪ G_s (corresponds to real-time market)
- Objective:

$$\min \sum_{g \in G} \sum_{s \in S} \sum_{t \in T} \pi_s (K_g u_{gst} + S_g v_{gst} + C_g p_{gst})$$

Unit Commitment Model Decomposition and Scenario Selection Wind Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Lagrangian Decomposition Algorithm

- Past work: (Takriti et al., 1996), (Carpentier et al., 1996), (Nowak and Römisch, 2000), (Shiina and Birge, 2004)
- Key idea: relax non-anticipativity constraints on both unit commitment and startup variables
 - Balance size of subproblems
 - Obtain lower and upper bounds at each iteration

Lagrangian:

$$\mathcal{L} = \sum_{g \in G} \sum_{s \in S} \sum_{t \in T} \pi_s (K_g u_{gst} + S_g v_{gst} + C_g p_{gst}) \\ + \sum_{g \in G_s} \sum_{s \in S} \sum_{t \in T} \pi_s (\mu_{gst} (u_{gst} - w_{gt}) + \nu_{gst} (v_{gst} - z_{gt}))$$

Unit Commitment Model Decomposition and Scenario Selection Wind Model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Parallelization

- Second-stage subproblems, second-stage feasibility runs and economic dispatch simulations can be parallelized
- Implemented in MPI, CPLEX

Decomposition and Scenario Selection

・ロト (周) (E) (E) (E) (E)

Scenario Selection for Wind Uncertainty and Contingencies

- Past work: (Gröwe-Kuska et al., 2002), (Dupacova et al., 2003), (Heitsch and Römisch, 2003), (Morales et al., 2009)
- Scenario selection algorithm inspired by importance sampling
 - **O** Generate a sample set $\Omega_S \subset \Omega$, where $M = |\Omega_S|$ is adequately large. Calculate the cost $C_D(\omega)$ of each sample $\omega \in \Omega_{S}$ against the best deterministic unit commitment

policy and the average cost
$$\bar{C} = \sum_{i=1}^{M} \frac{C_D(\omega_i)}{M}$$
.

2 Choose N scenarios from Ω_S , where the probability of picking a scenario ω is $C_D(\omega)/C$. 3 Set $\pi_s = C_D(\omega)^{-1}$ for all $\omega^s \in \hat{\Omega}$.

Unit Commitment Model Decomposition and Scenario Selection Wind Model

Wind Model Data Source

- 2 wind integration cases: moderate (7.1% energy integration, 2012), deep (14% energy integration, 2020)
- California ISO interconnection queue lists locations of planned wind power installations
- NREL Western Wind and Solar Interconnection Study archives wind speed - wind power for Western US

Unit Commitment Model Decomposition and Scenario Selection Wind Model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Calibration

- Relevant literature: (Brown et al, 1984), (Torres et al., 2005), (Morales et al, 2010)
- Calibration steps
 - Remove systematic effects:

$$y_{kt}^{S} = \frac{y_{kt} - \hat{\mu}_{kmt}}{\hat{\sigma}_{kmt}}.$$

Transform data to obtain a Gaussian distribution:

$$y_{kt}^{GS} = N^{-1}(\hat{F}_k(y_{kt}^S)).$$

Sestimate the autoregressive parameters φ_{kj} and covariance matrix Σ̂ using Yule-Walker equations.

Unit Commitment Model Decomposition and Scenario Selection Wind Model

Data Fit

A. Papavasiliou U.C. Berkeley

Introduction Methodology Results

WECC Model

Model Summary

- 124 units (82 fast, 42 slow)
- 53665 MW power plant capacity
- 225 buses
- 375 transmission lines
- 42 scenarios
- Four studies
 - Deep (14% energy integration) without transmission constraints, contingencies
 - With transmission constraints, contingencies:
 - No wind
 - Moderate (7.1% energy integration, 2012)
 - Deep (14% energy integration, 2020)

Competing Reserve Rules

- Perfect foresight: anticipates outcomes in advance
- Percent-Of-Peak-Load rule: commit total reserve T_{req} at least x% of peak load, F_{req} = 0.5T_{req}
- 3+5 rule: commit fast reserve F_{req} at least 3% of hourly forecast load plus 5% of hourly forecast wind, $T_{req} = 2F_{req}$

Day Types

- 8 day types considered, one for each season, one for weekdays/weekends
- Day types weighted according to frequency of occurrence

A. Papavasiliou U.C. Berkeley

Policy Comparison - Deep Integration, No Transmission, No Contingencies

Explanation of SUC Superior Performance

- When reserve constraints are binding, deterministic policy overcommits.
- When reserve constraints are not binding, deterministic policy underestimates value of protecting against adverse wind outcomes.

Policy Comparison - No Wind Integration

Policy Comparison - Moderate Integration

Policy Comparison - Deep Integration

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

	Deep-S	No Wind	Moderate	Deep
RE daily waste (MWh)	100	0	890	2,186
Cost (\$M)	5.012	11.508	9.363	7.481
Capacity (MW)	20,744	26,377	26,068	26,068
Daily savings (\$)	38,628	104,321	198,199	188,735
Forecast gains (%)	32.4	35.4	41.9	46.7

(日) (日) (日) (日) (日) (日) (日)

Introduction Methodology Results

Demand Response Results

	Daily	Daily Load	
	Cost (\$)	Shed (MWh)	
No wind	9,012,031	17.301	
Centralized Moderate	8,677,857	1.705	
Bids Moderate	211,010	609.914	
Coupled Moderate	265,128	2.217	
Centralized Deep	8,419,322	10.231	
Bids Deep	578,909	1221.492	
Coupled Deep	705,497	112.452	

Running Times

- CPLEX 11.0.0
- DELL Poweredge 1850 servers (Intel Xeon 3.4 GHz, 1GB RAM)
- (*P*1), (*P*2_s) run for 120 iterations, (*ED*_s) run for last 40 iterations
- Average running time of 43776 seconds on single machine
- Average MIP gap of 1.39%

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Conclusions

- Consistent performance of scenario selection:
 - Stochastic unit commitment policy yields 32.4% 46.7% of potential benefits of perfect foresight over various types of uncertainty
- Transmission constraints and contingencies strongly influence results - need for advanced optimization
 - Overestimation of capacity credit from 1.2% of installed wind capacity to 39.8% for deep integration
 - Underestimation of daily operating costs from 7.481 \$M to 5.102 \$M for deep integration
- First steps towards integrating deferrable demand models with renewable supply uncertainty: Deferrable demand imposes no additional capacity requirements, coupling results in 3.06% - 8.38% operating cost increase

Perspectives

- Parallelization in high performance computing facility of Lawrence Livermore National Labs
 - Sensitivity of optimal solution and objective function value on number of selected scenarios
 - Scoping study for industry
- Expansion of model for transmission / generation expansion planning
- Further refinement of demand response model

References

- A. Papavasiliou, S. S. Oren, R. P. O'Neill, Reserve Requirements for Wind Power Integration: A Stochastic Programming Framework, accepted at IEEE Transactions on Power Systems.
- A. Papavasiliou, S. S. Oren, Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network, submitted to Operations Research, 2011 ENRE INFORMS student travel scholarship runner-up.
- A. Papavasiliou, S. S. Oren, Large-Scale Integration of Deferrable Electricity and Renewable Energy Sources in Power Systems, submitted to IEEE Transactions on Power Systems, 2011.

References (II)

- A. Papavasiliou, S. S. Oren, Integration of Contracted Renewable Energy and Spot Market Supply to Serve Flexible Loads, 18th World Congress of the International Federation of Automatic Control, August 2011.
- A. Papavasiliou, S. S. Oren, *Coupling Wind Generators with Deferrable Loads*, IEEE Energy 2030, November 2008.

Thank you

Questions?

Contact: tonypap@berkeley.edu

http://www3.decf.berkeley.edu/~tonypap/publications.html

Demand Response Study

	Zero	Moderate	Deep
Wind capacity (MW)	0	6,688	14,143
DR capacity (MW)	0	5,000	10,000
Daily wind energy (MWh)	0	46,485	95,414
Daily DR energy (MWh)	0	40,000	80,000
DR/firm energy (%)	0	6.1	12.2

Centralized Load Dispatch

• Stochastic unit commitment with additional constraint: $\sum_{N}^{N} p_{ast} = R$

$$\sum_{t=1} p_{gst} = F$$

- Assumptions of centralized load control:
 - Central co-optimization of generation and demand (computationally prohibitive)
 - Perfect monitoring and control of demand
- Centralized load control represents an idealization that can be used for:
 - Quantifying the cost of decentralizing demand response

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

• Estimating the capacity savings of deferrable demand

Demand Bids

- Based on retail consumer model of (Borenstein and Holland, 2005), (Joskow and Tirole, 2005), (Joskow and Tirole, 2006)
- State contingent demand functions used in economic dispatch D_t(λ_t; ω) = a_t(ω) − αbλ^R − (1 − α)bλ_t
- Note that the demand function model has to:
 - Be comparable to the deferrable demand model in terms of total demand *R*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Be consistent with the observed inflexible demand in the system

Coupling

$$\min_{\mu_t(x_t)} \mathbb{E}\left[\sum_{t=1}^{N-1} \lambda_t (\mu_t(x_t) - s_t)^+\right] \Delta t + \rho r_N \right]$$

$$\mu_t(x) \le C, (\mu_t(x) - s_t)^+ \le M_t, r_{t+1} = r_t - u_t$$

Integrating Demand Response in Stochastic Unit Commitment

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶