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Abstract—We present a stochastic unit commitment model for
assessing the reserve requirements resulting from the large-scale
integration of renewable energy sources and deferrable demand
in power systems. We present three alternative demand response
paradigms for assessing the benefits of demand flexibility in ab-
sorbing the uncertainty and variability associated with renewable
supply: centralized co-optimization of generation and demand
by the system operator, demand bids and coupling renewable
resources with deferrable loads.We present simulation results for
a model of the Western Interconnection.

I. INTRODUCTION

This paper focuses on assessing the benefits of demand-
side flexibility on absorbing the variability and uncertainty
of renewable supply. In the paper we consider three fun-
damental approaches for modeling flexible demand. At the
fully centralized end, we consider the case where the sys-
tem operator centrally co-optimizes the dispatch of demand-
side resources, renewable supplies and generators. This is
unrealistic in practice as the system operator operates the
system at a bulk scale and cannot enforce control on the
system down to the retail level. In addition, the optimization
problem at hand is too complex to solve. Nevertheless, this
ideal model provides a benchmark for the potential benefits
of demand flexibility. Sioshansi [1] considers this model in a
deterministic setting. We extend this approach to account for
the uncertainty introduced by renewable energy supply. A fully
decentralized approach for coordinating demand response that
we also consider in this paper is to establish real-time pricing
at the retail level. This possibility was introduced by Schweppe
et al. [2] and is discussed by Borenstein et al. [3]. The common
approach of reasoning about real-time pricing in the power
system economics literature is the use of decremental demand
bids. Sioshansi and Short [4] use this approach in the context
of a unit commitment model. Borenstein and Holland [5]
and Joskow and Tirole [6], [7] also use this approach for
analyzing retail pricing. However, there is strong institutional
opposition to this approach as it exposes retail consumers to
the volatility of electricity prices. In addition, real-time prices

often fail to convey the economic value of demand response
due to the non-convex operating costs of system operations.
This effect has been reported by Sioshansi [4]. Moreover,
demand-side bidding fails to capture the cross-elasticity of
deferrable demand over time. An intermediate approach for
integrating demand response that we consider in this paper is
coupling the operations of renewable resources with deferrable
demand. The motivation of coupling renewable generation
with deferrable demand is to create a net resource that appears
“behind the meter” as a virtual power plant from the point of
view of the system operator.

In order to accurately assess the impacts of renewable
energy and demand response integration on power system
operations it is necessary to represent the balancing operations
of the remaining grid by using a unit commitment model of
the daily scheduling and dispatch procedure performed by the
system operator. In this paper, a stochastic formulation of the
unit commitment model is used in order to quantify the level
of reserves that are required in order to integrate renewable
resources reliably and the contribution of demand response in
mitigating these requirements. The fact that a unit commitment
model can accurately represent the balancing operations of
the system has resulted in numerous renewable integration
studies based on unit commitment, including Ruiz et al. [8],
Sioshansi and Short [4], Wang et al. [9], Contantinescu et al.
[10], Tuohy et al. [11], Morales et al. [12], Bouffard et al.
[13], Papavasiliou et al. [14] and Papavasiliou and Oren [15].

Despite the fact that stochastic unit commitment is appro-
priate for quantifying the impacts of renewable energy and
demand response integration, the model introduces challenges
in terms of representing uncertainty and solving the resulting
large-scale mixed integer linear program. Dupacova et al.
[16] pioneered scenario selection and scenario reduction algo-
rithms motivated by stability results on the optimal values of
stochastic programs with respect to perturbations in probability
measures. Faster variants of these algorithms were presented
by Heitsch et al. [17] and their effectiveness in the stochastic
unit commitment problem was demonstrated by Gröwe-Kuska
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et al. [18]. As a result of this work, this class of algorithms
was subsequently adopted in the stochastic unit commitment
literature. Among the wind integration studies referenced
above, the algorithms of Heitsch et al. [17] are used by Tuohy
et al. [11] and Morales et al. [12]. Although these algorithms
can be applied in a straightforward fashion for the case of
renewable integration studies without transmission constraints,
they may underestimate the severity of certain scenarios [14].
Furthermore, it is not clear how they can be used for selecting
and weighing scenarios of multi-area renewable production
multiplexed with composite element (generator and transmis-
sion line) outages [15]. In order to address these challenges,
Papavasiliou and Oren [15] propose a scenario selection and
weighing algorithm inspired by important sampling that is
also used in this paper. According to the proposed algorithm,
scenarios are selected according to their effect on the expected
cost and weighed such that their selection does not bias
the objective function of the stochastic unit commitment
formulation. In order to address the size of the resulting
large-scale mixed integer linear program, the decomposable
structure of the problem can be exploited. Decomposition
algorithms based on Lagrangian relaxation for the stochastic
unit commitment problem were pioneered by Takriti et al.
[19]. Alternative relaxations were subsequently presented by
Carpentier et al. [20] and Nowak and Römisch [21]. Shiina and
Birge [22] presented an alternative decomposition approach for
solving the stochastic unit commitment problem using column
decomposition. In Papavasiliou et al. [14] the authors present
a dual decomposition algorithm for solving the problem that
is also used in this paper.

The remaining paper is organized as follows. In Section II
we provide an overview of the components of our model. In
Section III we describe in detail the demand flexibility models
that we consider in our analysis. Results from a test case of
the Western Interconnection are presented in Section IV. In
Section V we discuss the conclusions of our work.

II. MODEL OVERVIEW

The modeling approach adopted in this paper follows a
two-stage stochastic formulation proposed by Ruiz et al. [23].
Generators are partitioned in a set of slow resources that need
to be committed in the day-ahead time frame and a set of fast
generators that can be committed and dispatched in real time,
after uncertainty in the system has been revealed. In Fig. 1
we present a diagram for integrating demand response models
with the unit commitment and real-time dispatch model. The
decision support module is a stochastic unit commitment
model that determines the day-ahead unit commitment sched-
ule of slow generation resources, while accounting for the
randomness of renewable supply and firm (inflexible) demand.
Given the day-ahead schedule determined by the stochastic
unit commitment model, we evaluate the performance of
various demand response strategies in the economic dispatch
phase, represented by the evaluation module.

A. Statistical Models
The analysis is driven by uncertainty in renewable supply,

firm (inflexible) demand, and real-time prices. We use a second
order autoregressive time series model for representing wind
speed. A static power curve is used for converting wind speed
to wind power production. Our calibration and simulation
methodology follows Brown et al. [24], Torres et al. [25]
and Callaway [26]. The calibration and simulation procedure
follows the steps outlined in Papavasiliou and Oren [15]. The
fit of the wind model to the available data is presented in
Papavasiliou and Oren [15]. Firm demand is also modeled as a
second order autoregressive process, assume to be independent
of renewable production.

B. Stochastic Unit Commitment
In order to determine the day-ahead reserves that are com-

mitted by the system operator in order to accommodate the
simultaneous integration of renewable supply and deferrable
demand, we formulate a unit commitment model that assumes
that the system operator co-optimizes the dispatch of flexible
loads and generation resources. The model follows the formu-
lation in Papavasiliou et al. [14]. An integral constraint can
be introduced to the stochastic unit commitment model that
represents the need to supply a total of R units of energy to
deferrable loads within the horizon T :∑

t∈T

est = R, s ∈ S, (1)

where S is the set of scenarios and est is the amount of energy
supplied to deferrable loads in scenario s, period t.

III. DEMAND FLEXIBILITY

As we discuss in Section I, we consider three fundamental
approaches for modeling demand flexibility. In a fully decen-
tralized approach, price-responsive loads bid valuations and
demand flexibility is introduced in the objective function of the
problem. Decision variables for such price-responsive loads
are denoted by dlt. In a fully centralized approach, demand
flexibility can be accounted for explicitly by the system
operator and is introduced in the problem through constraints
rather than through the objective function. In this case the
system operator controls loads directly through decision vari-
able et while respecting their operating constraints. Coupling
represents an intermediate approach where deferrable loads
coordinate their consumption with renewable suppliers in order
to appear “behind the meter” from the point of view of the
system operator.

A. Centralized Load Control
In the centralized load control approach we assume that the

system operator co-optimizes the dispatch of flexible loads
and generation resources. The formulation of the centralized
load control model is obtained from the economic dispatch
model by enforcing dlt = 0 for all loads l and periods t. The
net demand Dst in the market clearing constraint represents
the difference of random firm demand and random renewable
supply.
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Fig. 1. Overview of the model.

B. Demand Bids

The demand model that we present in this section is based
on Borenstein and Holland [5] and Joskow and Tirole [6], [7].
We assume a linear demand function that consists of a fraction
α of inflexible consumers who face a fixed retail price λR, and
a fraction 1 − α of price-responsive consumers who face the
real-time price of electricity λt. The demand function Dt(·)
for each period can therefore be expressed as:

Dt(λt;ω) = at(ω)− αbλR − (1− α)bλt, (2)

where ω represents an element of the sample space that deter-
mines the realized inflexible demand, at(ω) is the intercept
and b is the slope of the demand function. Note that we
assume a common slope for all time periods and a time-
varying stochastic intercept that depends on the realization of
inflexible demand. The calibration of the demand functions
is described in detail in Papavasiliou [27]. The resulting
economic dispatch model is obtained by enforcing et = 0
in the economic dispatch model. Again, net demand in the
market clear ing constraint represents the difference of firm
demand and renewable supply.

C. Coupling

In this model an aggregator contractually owns the output
from a large group of renewable generation assets. The aggre-
gator enters into a contractual agreement to supply deferrable
loads. Loads specify their energy demand in the form of
requests for a certain amount of energy over a fixed time
window. The aggregator can control the loads directly and uses
renewable power from its assets as the primary energy source
for satisfying deferrable demand. In the case of renewable
supply shortage, the aggregator can resort (to a limited extent)

to the real-time market for procuring power at the prevailing
real-time price. The aggregator compensates deferrable loads
at a rate ρ for each unit of unserved energy. Any excess
renewable power is supplied to the system. The setup is similar
to dynamic scheduling [28], whereby demand and supply
resources from different control areas pair their schedules in
order to produce a zero net output to the remaining system.
Such scheduling is currently implemented in the ERCOT
market. The model is described in detail in Papavasiliou and
Oren [29].

IV. RESULTS

A. Preliminaries

We present results for a model of the Western Electricity
Coordinating Council (WECC), also used in other studies [30],
[14], [15]. The model consists of 124 generators and we do not
account for transmission constraints. Details about the system
can be found in Papavasiliou et al. [14]. We consider three
wind/demand response integration studies that are summarized
in Table I. For each level of wind integration, we assume a
demand response integration level that is approximately one-
for-one in terms of energy demand and capacity. We assume
that deferrable requests span over 24 hours. We consider 6
levels of power supply for the control problem. The penalty
of unserved energy is ρ = 5000 $/MWh. We use 12 sce-
narios for the formulation of the stochastic unit commitment
model. The wind data that is used for the calibration of the
statistical models is based on the National Renewable Energy
Laboratory (NREL) 2006 Western Wind and Solar Integration
Study [31]. The moderate and deep wind integration studies
correspond to the 2012 and 2020 wind integration targets of
California. Further details about the wind production data can



TABLE I
KEY PARAMETERS OF THE DEMAND RESPONSE CASE STUDY.

No Wind Moderate Deep
Wind capacity (MW) 0 6688 14143
DR Capacity C (MW) 0 5000 10000
Daily wind energy (MWh) 0 46485 95414
Daily DR energy R (MWh) 0 40000 80000
Flexible/firm demand (%) 0 6.1 12.2

be found in Papavasiliou and Oren [15]. In order to reduce the
computational requirements of the model we focus on eight
representative day types instead of simulating an entire year
of operations for the system.

B. Costs, Load Loss, Capacity Requirements and Spillage

In table II we present the operating costs and daily load
losses for the case with no wind and no demand response
in the system. The operating costs do not include the cost
of lost load. Note that for the average demand of the system
under consideration, the 1-day-in-10-years reliability criterion
requires daily load shed of no more than 179 MWh. This
can be used as a benchmark against which we can compare
the extent to which each demand response mechanism is
acceptable from a reliability perspective.

In Tables III, V we present the daily operating cost of each
policy for the moderate and deep integration cases respectively.
The column with bold figures, that corresponds to centralized
load dispatch by the system operator, contains absolute cost
values. Cost figures corresponding to the other policies are
relative to the centralized operating costs. The row with total
costs weighs the cost of each day type with its relative
frequency in the year in order to yield annual results. The
last row shows the relative performance of centralized control
with respect to the other policies, normalized by the cost of
centralized control. Note that the operating costs of price-
based demand response outperform those of coupling. This can
be attributed to the diversification effect of including flexible
demand in the market. The “cost of anarchy” that results
from using price signals in order to control load response,
rather than centralized control, ranges from 2.43% - 6.88%
for the case of demand-side bidding and 3.06% - 8.38% in
the case of coupling. Although demand bids result in lower
operating costs, demand-side bidding results in load shedding
that is 3.4 times greater than the 1-day-in-10-years criterion
for the moderate integration case and 6.8 times greater for the
deep integration case. Coupling results in the operation of the
system within reliability limits as we note in Tables IV, VI.

In Table VII we present a breakdown of operating costs
by type for each of the policies that we consider for each
integration level. We note that price response and coupling
result in cost increases in all cost categories. As Sioshansi
[1] argues, the marginal cost signal itself does not necessarily
induce efficient load response due to the fact that it fails to
capture the non-convex operating costs of the system. The
observation of Sioshansi is also supported by our results.

In Table VIII we present the amount of capacity that is
committed by each policy as well as the amount of renew-

TABLE II
DAILY COST OF OPERATIONS AND LOAD SHEDDING FOR EACH DAY TYPE

FOR THE DEMAND RESPONSE STUDY - NO WIND.

Daily Cost ($) Shed (MWh)
WinterWD 7,390,206 0.001
SpringWD 7,145,737 4.317
SummerWD 13,684,880 30.869
FallWD 9,589,506 0
WinterWE 6,079,003 0.001
SpringWE 5,855,883 0
SummerWE 11,839,573 0
FallWE 7,868,146 154.285
Total 9,012,031 17.301

TABLE III
DAILY COST OF OPERATIONS FOR EACH DAY TYPE FOR THE DEMAND

RESPONSE STUDY - MODERATE INTEGRATION.

Cost ($) ∆ Cost ($) ∆ Cost ($)
Centralized Coupled Decoupled

WinterWD 7,320,620 256,740 300,051
SpringWD 6,408,355 172,006 139,589
SummerWD 13,625,136 155,096 219,124
FallWD 9,640,017 316,089 157,159
WinterWE 5,890,755 300,701 246,408
SpringWE 3,637,240 707,223 244,353
SummerWE 11,739,177 176,230 234,101
FallWE 7,735,502 277,817 189,465
Total 8,677,857 265,128 211,010
relative (%) 3.06 2.43

TABLE IV
DAILY LOAD LOSS FOR EACH DAY TYPE FOR THE DEMAND RESPONSE

STUDY - MODERATE INTEGRATION.

Shed (MWh) Shed (MWh) Shed (MWh)
Centralized Coupled Decoupled

WinterWD 0 0 177.257
SpringWD 1.532 1.869 701.828
SummerWD 3.617 4.346 821.719
FallWD 1.661 1.661 799.323
WinterWE 0 0 642.105
SpringWE 0 0.249 453.791
SummerWE 0.059 1.100 215.816
FallWE 6.792 10.005 976.766
Total 1.705 2.217 609.914

TABLE V
DAILY COST OF OPERATIONS FOR EACH DAY TYPE FOR THE DEMAND

RESPONSE STUDY - DEEP INTEGRATION.

Cost ($) ∆ Cost ($) ∆ Cost ($)
Centralized Coupled Decoupled

WinterWD 6,656,665 633,164 556,775
SpringWD 5,692,860 978,182 572,465
SummerWD 13,661,862 505,869 835,609
FallWD 9,321,281 772,659 404,523
WinterWE 5,220,109 711,882 616,931
SpringWE 4,251,600 910,253 576,010
SummerWE 12,136,223 329,929 472,930
FallWE 7,930,823 700,205 515,431
Total 8,419,322 705,497 578,909
relative (%) 8.38 6.88

able supply spillage. Capacity requirements do not change
significantly for each integration study, which suggests that
the additional deferrable demand can be fully absorbed by the
installed renewable capacity. Wind spillage is negligible across
all cases.



TABLE VI
DAILY LOAD LOSS FOR EACH DAY TYPE FOR THE DEMAND RESPONSE

STUDY - DEEP INTEGRATION.

Shed (MWh) Shed (MWh) Shed (MWh)
Centralized Coupled Decoupled

WinterWD 0.001 8.290 552.769
SpringWD 0 351.782 1382.459
SummerWD 0.001 36.643 1952.332
FallWD 33.660 143.629 1210.443
WinterWE 0 0 929.960
SpringWE 0 32.601 1008.222
SummerWE 2.081 58.725 1157.565
FallWE 57.005 132.134 1260.137
Total 10.231 112.452 1221.492

TABLE VII
BREAKDOWN OF DAILY OPERATING COSTS FOR EACH DEMAND RESPONSE

POLICY FOR EACH INTEGRATION LEVEL ($).

Min load Fuel Startup Total
No wind 1,382,156 7,549,491 80,384 9,098,537
Centralized Moderate 1,246,552 7,364,815 66,489 8,677,857
Bids Moderate 1,317,383 7,471,363 100,123 8,888,866
Coupled Moderate 1,330,130 7,532,898 79,958 8,942,958
Centralized Deep 1,194,606 7,174,611 50,105 8,419,322
Bids Deep 1,360,543 7,494,472 143,217 8,998,232
Coupled Deep 1,432,948 7,592,595 99,276 9,124,819

TABLE VIII
CAPACITY REQUIREMENTS AND WIND POWER SPILLAGE FOR EACH

DEMAND RESPONSE POLICY.

Capacity (MW) Spillage (MWh)
No wind 26,123 N/A
Moderate 26,254 0
Deep 26,789 2

V. CONCLUSIONS

In this paper we present a stochastic unit commitment model
that accounts for renewable energy and demand response
integration. We compare three demand response paradigms:
centralized load dispatch, demand-side bidding and coupling.
We analyze the case of no wind in the network, as well as cases
of wind integration that correspond to the 2012 and 2020 wind
integration targets of California, with a corresponding one-for-
one increase in flexible demand. Our analysis is performed on
a model of the Western Electricity Coordinating Council that
consists of 124 generators. We find that the “cost of anarchy”
incurred by decentralizing demand response ranges between
3.06% - 8.38% for the case of coupling. Price response results
in a cost increase ranging between 2.43% - 6.88% of the cost
corresponding to centralized load dispatch. However, price
response fails to capture the cross-elasticity of demand across
time periods, resulting in excessive lost load. For the case stud-
ies that we consider, the additional integration of deferrable
demand imposes no additional capacity requirements to the
system.
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