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Abstract—We propose a settlement mechanism for optimally
scheduling real time electricity consumption which is suitable for
an automated demand response control system. Our proposed
settlement mechanism, supply function bidding, is interpreted
as a Newton algorithm for optimization problems with de-
composable structure, and it is shown to satisfy the second
fundamental theorem of welfare economics for the case of affine
supply function bids. We simulate the behavior of our proposed
control mechanism for the case of demand response via room
temperature control, and we demonstrate how a suboptimal
control policy can have adverse impacts both in terms of system
performance but also in terms of economic incentives.

I. INTRODUCTION

The reliable operation of power systems requires a contin-
ual balancing of electricity supply and demand. As system
operators around the United States are integrating renewable
energy sources at an unprecedented scale, this balancing task is
becoming more challenging than ever. In contrast to traditional
practices of the past where supply resources were scheduled
to track the inelastic demand of electricity consumers, in
future power grids demand side resources are expected to
share an active role in balancing the grid and to adjust their
energy consumption to the unpredictable and volatile energy
supply of renewable resources. The necessary technological
transformation of power systems which can enable this new
paradigm is underway, with significant expansions in the
measurement, control and communications infrastructure of
existing systems.

As demand side resources become active participants in
modern power systems, the development of decentralized,
market-based mechanisms which will enable a fair allocation
of supply resources is necessitated. In this paper we propose
a market based mechanism for scheduling short term energy
consumption which is suited for the provision of balancing
services at an aggregate level. Ancillary services, the balancing
services which are provided to system operators for ensuring
reliable system operations at the sub-hourly and minute-by-
minute time frame, include regulation, load following, spin-
ning and non-spinning reserve as well as replacement reserve.
These services have been traditionally provided by flexible
generators which are capable of adjusting their output rapidly
in response to unanticipated imbalances between supply and

Fig. 1. Demand response aggregation scenario.

demand. In modern power systems, the provision of these
services from aggregations of electricity consumers who can
adjust their electricity demand is becoming an attractive alter-
native [1].

A. System Design
The system which we consider is shown in Fig. 1. An

aggregator who coordinates the electricity consumption of
a large group of flexible electricity consumers commits to
deliver a certain capacity, c, of ancillary services to the system
operator by bidding in the ancillary services market. This
entitles the system operator to broadcast set-points of power
consumption within a band of c units of power for the duration
of the provision of the ancillary services. The aggregator
commits to adjust the aggregate energy consumption within
its service area such that the difference between a baseline
energy consumption level and actual aggregate consumption
in the service area closely follows the set-points of the system
operator. The objective of the aggregator is to allocate energy
rationing responsibilities among individual consumers such
that aggregate disutility over the entire horizon is minimized.

Due to the decentralized nature of the planning problem,
we propose a market-based control mechanism for allocat-
ing power to individual consumers whereby the aggregator
uses a supply function auction mechanism to price demand
response. In particular, prior to the demand response event
the aggregator broadcasts a price signal, λ, for each interval
of the event. Consumers respond by bidding a parameter for



each time interval which provides a compact description of
their supply function at the neighborhood of the broadcast
price. The process iterates until price converges, in advance
of the demand response event. Loads then commit to dispatch
according to their bids for the entire duration of the event,
and the aggregator rewards loads according to the converged
market clearing prices.

The process which we propose is entirely analogous to the
function of day-ahead electricity markets for the determination
of generation dispatch schedules [2], with the aggregator
reproducing the function of an auctioneer, the system operator
set-points representing inelastic demand and loads acting as
suppliers of negawatts1. An instantiation of the proposed
system would require a control center at the aggregator site
which communicates to processors embedded in load switches
at consumer locations. These processors can sustain a model
of consumer utility, and can be calibrated by users according
to their demand response experience.

The justification for using a market-based control mecha-
nism for implementing demand response is decentralization.
In our proposed system, a large resource allocation problem
is decomposed to individual subproblems which simplifies the
solution of the problem. Arriving at an optimal consumer
schedule rapidly is essential since ancillary services are often
cleared at frequent time intervals in real time markets, leaving
little time for the determination of an optimal schedule.
Moreover, in our choice of design each participating load
retains privacy of its personal information and only has access
to the information which is required for the clearance of the
auction, as opposed to other market-based control architectures
[3] in which information flows between nodes of the network.
In contrast to supply function bidding auctions in day-ahead
electricity markets, we use parameter bids to describe supply
functions at the neighborhood of the prevailing price rather
than entire supply function bids. Since demand response may
involve large numbers of participating loads, this design aims
at minimizing the amount of information that flows between
the aggregator and consumers at any given time in order to
prevent congestion in communication channels.

We will denote Ui(x) as the disutility that loads incur by
deviating from their baseline energy consumption, where x
denotes the amount of energy rationing, or equivalently the
amount of negawatts which are supplied. Consumer supply
functions are denoted by x!(λ) and map price, λ, to the
optimal supply x!. That is, x!

i (λ) solves

min
xi

Ui(xi)− λxi. (1)

Supply functions are approximated by parameterized func-
tions, xi(pi, λ), which map a parameter bid pi and the market
price, λ, to a quantity of supply, xi. For example, in affine
bids agent i bids a pair of parameters pi = (αi, βi) which
respectively define the intercept and slope of a linear approx-
imation of the true supply function. Based on the bids of all

1The term negawatts refers to energy rationing, the demand-side equivalent
of megawatts, the power supplied by generators.

suppliers, the aggregator sets the market clearing price λ so
as to equate supply with demand.

B. Literature review

There is a substantial literature on market based control
architectures, how these relate to decomposition methods in
optimization and applications of these control architectures
in complex systems. Decomposition methods are general
methods for efficiently solving classes of problems with a
decomposable structure, whereby a problem is cast in the form
of a master problem and a group of small subproblems which
can be solved more efficiently than the original problem. Boyd
[4] classifies decomposition methods in primal and dual meth-
ods. In primal decomposition methods, primal variables are
used for communication between the master and subproblems,
as opposed to dual methods where Lagrange multipliers are
used for this purpose. Our work falls in the latter category,
though other authors have used primal methods for similar
applications as we discuss below.

Algorithms often admit an economic interpretation, which
in turn suggests mechanisms for organizing complex systems
such that a goal is attained at minimal cost. Scarf [5] draws
such an analogy for the case of the simplex method, where
simplex iterations are interpreted as the iterated search for
a set of commodity prices which equilibrate an economic
system by providing zero prots to agents who participate
in the market, and negative prots for all other agents.The
economic interpretation of decomposition algorithms arises by
identifying the primal problem as the task of an auctioneer
who strives to maximize social benefit, and the subproblems
as the profit maximization tasks of self-interested agents. This
is emphasized in the work by Kelly et al. [6], who apply both
primal and dual decomposition methods for the problem of
optimizing the allocation of network bandwidth to routes in
capacity constrained communication networks. In their work,
they partition the original problem to a class of subproblems
in which agents choose payments such that they maximize
personal benefits, and a problem of a network administrator
who chooses link prices such that a specific objective function,
proportional fairness, is maximized. We similarly decompose
our original optimization problem to the subproblems of profit
maximizing loads and the master problem of the aggregator,
who seeks to clear the market while minimizing payments to
loads.

Once a problem has been decomposed into its component
subproblems, a specific choice of decomposition algorithm for
solving the problem may suggest an economic mechanism, or
bargaining game, which can be used for arriving to the optimal
solution, with each iteration of the algorithm corresponding to
a round of bargaining. A standard example is the interpretation
of the subgradient algorithm as a tatonnement process. In our
paper we derive an interpretation of the Newton algorithm
as a supply function bidding process. This interpretation is
then used for the design of the control mechanism which we
propose.



The superior convergence speed of second order algorithms
such as the Newton method suggests that this may be a
preferable approach for organizing a system which needs
to be scheduled under tight time constraints. Therefore, our
motivation for proposing supply function bidding for demand
response contrasts to the original game theoretic motivation for
supply function bidding as a generalization of Cournot and
Bertrand competition. Klemperer and Meyer [7] argue how
supply function bidding can increase the flexibility of agent
strategies and allow them to respond well in the presence
of uncertain demand in oligopolistic settings, whereas our
motivation for proposing supply function bidding in this paper
is computational.

The fact that decomposition algorithms converge suggests
that establishing a market and letting agents work towards the
maximization of their personal benefit results in an optimal
organization of the entire system, which is essentially the
conclusion of the second fundamental theorem of welfare
economics. In the paper we provide an equilibrium proof for
our proposed mechanism, which is inspired by the paper of
Johari and Tsitsiklis [8] who prove the second fundamental
theorem of welfare economics for a specific type of supply
function bids.

Newton algorithms such as the one which we present have
been employed in the literature for various applications. Ygge
and Ackermanns [9] also consider a decomposition scheme
for demand response, and Kurose and Simha [3] consider a
decomposition scheme for optimal sharing of files in an inter-
connected computer system. Although these papers implement
decomposition algorithms, they do not propose specific market
mechanisms. Closest to our work is that of Galiana [10], who
presents a dual decomposition algorithm for the commitment
of electric power generation units in the day ahead electricity
market. Galiana applies the Newton algorithm to the dual
problem of the unit commitment problem, he provides an
interpretation of dual decomposition as a market mechanism
for unit commitment in a day ahead market consisting of profit
maximizing generation units, profit maximizing distribution
companies and a transmission operator who seeks to maximize
merchandising surplus, and he presents an equilibrium proof.
However, unlike our proof which relies on information which
becomes available during the bargaining iterations, his proof
requires that the transmission operator has access to historical
data of the transmission system. The accuracy of this data is
questionable and can undermine the efficiency of the resulting
equilibrium.

II. ANALYSIS

A. Consumer, aggregator and system optimization

We are seeking to optimally allocate energy rationing
responsibilities to participating loads in a demand response
system, such that total disutility is minimized while meeting
the specified set-points of the system operator. The problem
can be formulated as follows:

(SYST)
min

x1...xNC

NC∑

i=1

Ui(xi)

s.t.
NC∑

i=1

xi = c.

(2)

By taking the Lagrangian of (SYST), the problem decom-
poses to the profit maximization problem of individual agents
who seek to optimally trade off revenues with costs,

(CONS-i) min
pi

Ui

(
xi(pi, λ)

)
− λ′xi(pi, λ), (3)

and an expenditure minimization problem for the aggregator
who seeks to achieve the desired aggregate response at mini-
mum payment,

(AGGR)

min
λ

c′λ

s.t.
NC∑

i=1

xi(pi, λ) = c.
(4)

Note that in a multi-period problem, c, λ and xi can
represent time-varying vectors. The cost Ui can then capture
the total cost over the entire demand response horizon.

B. Equilibrium
We now prove the second theorem of welfare economics

for supply function bidding, under certain assumptions on the
cost functions of agents. We define a competitive equilibrium
as a combination of prices λ∗ and parameters p∗ such that the
market clears, no agent has an incentive to deviate and the
aggregator minimizes payments:

(λ, pi) ∈ arg max{λ′xi(pi, λ)− Ui(xi(pi, λ))} ∀i

λ∗ ∈ arg min c′λ∗

NC∑

i=1

xi(p∗i , λ
∗) = c

(5)

We will consider the case of affine supply function bids,
xi(pi, λ) = ai + Biλ.

Proposition 1: Suppose Ui, i = 1, ..., NC, are continuously
differentiable, coercive2, convex functions. Then there exists a
pair λ∗, p∗ of equilibrium prices and supply function parame-
ters.

Proof:
The Lagrangian of the (SYST) problem is

L(x, λ) =
NC∑

i=1

Ui(xi) + λ′
(

c−
NC∑

i=1

xi

)
. (6)

The feasible region defined by the market clearing constraint
of (SYST) is a closed set and the objective function is
coercive, therefore the Weierstrass theorem applies and an
optimal solution x∗ exists. Moreover, by the convexity of Ui

2A function f is coercive if lim|x|→∞ f(x) =∞.



proposition 5.2.1 of [11] applies and therefore there exists a
geometric multiplier λ∗ such that

x∗ ∈ arg min
x

L(x, λ∗).

The Lagrangian decomposes into terms Ui(xi)− λ∗′xi there-
fore x∗i ∈ arg max{λ∗′xi−Ui(xi)} where x∗i is the component
of x∗ corresponding to agent i. Therefore, an equilibrium
exists because we can always choose α∗

i and B∗
i such that

x∗i = α∗
i + B∗

i λ∗.
The optimization problem of the aggregator is

minλ c′λ

s.t.
NC∑

i=1

α∗
i +

NC∑

i=1

B∗
i λ = c

(7)

This problem has a feasible solution, namely λ∗. In order to
guarantee that this is also an optimal solution it is sufficient
that

∑
i B∗

i be nonsingular. If this is indeed the case then
we have found our equilibrium pair of prices and parameters.
If this is not the case then we can perturb B∗∗

i = B∗
i + ε,

where ε is an appropriately chosen matrix, such that
∑

i B∗
i +ε

becomes non-singular and we can then set α∗∗
i = α∗

i +B∗
i λ∗−

B∗∗
i λ∗.

We next provide a standard economic interpretation of
the subgradient method as a tatonemment process, as well
as an intepretation of the Newton algorithm as a supply
function bidding auction. These interpretations suggest market
mechanisms for attaining the efficient equilibrium which was
shown to exist in this section.

C. Tatonnement and the subgradient method
We now apply the steepest descent algorithm on the dual

function of the problem (SYST) and obtain the familiar
mechanism of Walrasian tatonnement. The dual function of
(SYST) is

q(λ) =
NC∑

i=1

min
xi

{
Ui(xi)− λxi

}
+ λc. (8)

Denote x∗i (λ) as the optimal response of consumer i to price
λ. Then c−

∑NC
i=1 x∗i (λ) is a subgradient of the dual function

at point λ. The dual variable is updated according to:

λk+1 = λk + γk(c−
NC∑

i=1

x!
i (λ

k)), (9)

where γk > 0 is the iteration step-size at step k. This iteration
can be interpreted as follows: at stage k of the bargaining
process the aggregator posts a price. Consumers respond with
the quantity that they would be willing to supply at that price.
In the next iteration k + 1 the aggregator adjusts the price in
order to more closely approximate the supply-demand equality
constraint. If there is excess supply, c −

∑NC
i=1 x!

i (λ) < 0,
then price decreases, whereas if there is inadequate supply,
c−

∑NC
i=1 x!

i (λ) > 0, price increases.

D. Supply function bidding and the Newton method

We now apply the Newton method to the Lagrangian
function of (SYST) and we obtain an affine supply function
bidding mechanism. We assume that the cost functions Ui(x)
are strictly convex. We denote by x∗i (λ) the optimal response
to price λ and λ∗(xi) as its inverse. The existence of λ∗(x)
is guaranteed by the first order conditions for optimality:
λ−∇Ui(x) = 0. The existence of its inverse in an open neigh-
borhood about the optimal solution (λ∗, x∗) is guaranteed by
the strict convexity of the cost functions, which ensures that the
implicit function theorem applies for the first order optimality
conditions λ−∇Ui(x) = 0.

The Newton iterations solve the following system:

∇2L(xk, λk)(∆xk,∆λk) = −∇L(xk, λk), (10)

where L(x, λ) is the Lagrangian of (SYST), given in equation
6.

Proposition 2: Suppose x∗i (λ) are concave functions. Then
(λk+1, xk+1

i ) lies on the hyperplane Hi(λ, x) which supports
x∗i (λ) at the point (λ∗(xk

i ), xk
i ).

Proof: The Newton algorithm applied to the Lagrangian
yields

∇2Ui(xk
i )(xk+1

i − xk
i )− (λk+1 − λk) = −(∇Ui(xk

i )− λk).
(11)

By the implicit function theorem we have

∇x∗i (λ∗(xk
i )) = ∇2Ui(x∗i (λ∗(xk

i )))−1

= ∇2Ui(xk
i )−1 (12)

since x∗i (λ∗(xk
i )) = xk

i . Therefore, the hypograph of x∗i (λ)
is supported at λ∗(xk

i ) by the vector (−∇x∗i (λ∗(xk
i )), 1) =

(−∇2Ui(xk
i )−1, 1). Therefore we have the following expres-

sion for Hi(λ, x):

Hi(λ, x) = (−∇2Ui(xk
i )−1, 1)

(
λ−∇Ui(xk

i )
x− xk

i

)

(13)
By substituting λk+1 from equation 11 in the latter equation

we get Hi(λk+1, xk+1) = 0 and the result follows.

Proposition 2 suggests a supply function bidding mechanism
for arriving to the economic equilibrium of the system. In
particular, the proposition reassures us that if loads announce
an affine supply function which supports the hypograph of
the true supply function at (λk, x∗i (λk)), and if the auctioneer
clears the market as if loads were to adhere to their affine
bids, then this is equivalent to applying the Newton algorithm
on the Lagrangian of (SYST), and this mechanism is therefore
guaranteed to converge to the optimal solution. The hyperplane
which supports the hypograph of the true supply function
at (λk, x∗i (λk)) is determined by the following affine supply
function bid:



x∗i (α
k+1
i , Bk+1

i , λ) = αk+1
i + Bk+1

i λ, where
αk+1

i = xk −∇2Ui(xk)−1∇Ui(xk
i ),

Bk+1
i = ∇2Ui(xk

i )−1,
(14)

and the price update which clears the market is given by the
following equation:

λk+1 = (
NC∑

i=1

Bk+1
i )−1(c−

NC∑

i=1

αk+1
i ). (15)

A graphical explanation of the algorithm which we de-
scribed is presented in Fig. 2. Note that the information
which is communicated to the aggregator can equivalently be
expressed in terms of the first and second order information
of the agent cost functions ∇Ui(xk

i ), ∇2Ui(xk
i ). Moreover,

note that this is a truly decentralized mechanism, since each
agent has access to its individual information, and this de-
composition is not evident from applying the standard Newton
iterations of Eq. 10. Also note that both the aggregator and the
consumers have, at iteration k, all the necessary information
which is required to update their announcements at the fol-
lowing iteration. Moreover, from the equilibrium propositions
which we proved above we conclude that all market agents are
incented to implement this iterative search mechanism, since
it is guaranteed to converge to the competitive equilibrium
(λ∗, x∗). Moreover, this equilibrium solution is efficient as it
also solves (SYST).

This mechanism represents a second order analogue of
the Walrasian auction derived from the interpretation of the
subgradient method. In both cases the auctioneer talks first by
announcing a price. Agents respond to the price by optimizing
their quantity response to the prevailing price. In the Walrasian
tatonnement process this response consists of a single piece of
information, a zeroth order approximation of x∗(λ) which is
essentially the most accurate way for consumers to describe
their supply function in the neighborhood of the prevailing
quantity, whereas in the supply function bidding case the
response is the most accurate first order approximation of the
supply function in the neighborhood of the prevailing quantity.
In both auctions the auctioneer then updates the price signal
by guessing the agents’ supply functions in the neighborhood
of the existing iteration given their announced bids. This
bargaining process repeats until the sequence of broadcast
prices converges. Once the price converges the market clears
and loads are bound to supply the promised response.

III. SIMULATIONS

We present an application of our methodology for the case
of air conditioning load response. We describe the model of
customer utilities, and we derive our algorithm explicitly for
this multi-period model. We compare the convergence speed
of the tatonnement and supply function bidding mechanisms,
and we present a greedy mechanism which results in adverse
economic incentives.

Fig. 2. Graphical interpretation of supply function bidding mechanism.

A. Model description
In order to describe the utility function Ui of each customer,

we first define a linearized thermodynamic model for the
temperature response of their homes:

Ti,t+1 = Ti,t + ai(Tout − Ti,t) + bi(xi,t − Ei,b), (16)

where ai > 0 and bi > 0 are coefficients of the thermody-
namic model, Tout is the outside temperature, and Ei,b is the
baseline power consumption of home i, i.e. the level of power
consumption which would keep room temperature at the pre-
ferred level T des

i . The temperature dynamics imply that room
temperature increases in proportion to the difference between
room temperature and outside temperature, and temperature
decreases in proportion to the power which is consumed for
air conditioning.

The baseline power consumption Ei,b can be expressed as a
function of the model parameters. In this case we would have
Ti,t+1 = Ti,t = T des

i , and xi,t = 0. From (16) we obtain the
following expression:

Ei,b =
ai

bi
(Tout − T des

i ). (17)

Substituting back to equation (16) we obtain the following
recursive expression for temperature dynamics:

Ti,t+1 = (1− ai)Ti,t + aiT
des
i + bixi,t. (18)

We iterate Eq. (18) and solve for the temperatures Ti,t as a
function of xi,0...xi,t−1:

Ti,t+1 = (1− ai)t+1Ti,0 +
∑t

j=0 ai(1− ai)jT des
i

+
∑t

j=0 bi(1− ai)t−jxi,j .
(19)

Utility functions describe the comfort of each customer in
terms of a numeraire good which is assumed to be money.
Equivalently these functions can describe the discomfort of
each customer and can be interpreted as cost functions which
we seek to minimize. Here we assume that the utility functions
are convex functions which penalize deviations from the
desired temperature T des

i , and that customer discomfort is
additive in time. The level of discomfort for each period is:

Ũi,t(Ti,t) = ci|Ti,t − T des
i |ρi (20)

where ci > 0 and ρi > 0 are parameters of the disu-
tility function. Using Eq. (19), we can express the utility



functions in terms of xi,0 . . . xi,t−1: Ui,t(xi,0 . . . xi,t−1) =
Ũi,t

(
Ti,t(xi,1 . . . xi,t−1)

)
. The utility functions are strictly

convex for ρ > 1.
We use a time step of one minute for the simulations.

We consider a system of 5 users who track a set-point of
1 kW for a horizon of 120 minutes. In order to generate
sample values T des

i (K) for the preferred temperature of
each user, we sample a N (73, 1) distribution. Similarly, we
generate T0 (K) from a N (73, 1) distribution, ai (min−1)
from a N (0.05, 0.01) distribution and bi (K(kW min)−1) from
a N (0.5, 0.01) distribution. We have chosen the parameter
values of the thermodynamic model so that room temperature
increases by one degree if air conditioning stays off for one
minute with an outside temperature difference of 20 degrees,
and so that running an AC in the room for one minute can
bring the temperature down by one degree. We use a common
exponent ρ for the utility function of each user, and the
coefficient ci of the utility function is chosen so that changing
temperature by 5 degrees towards a favorable value for the
duration of one hour has an incremental value of $6.

B. Algorithm description

We clarify how the algorithms of sections II-C, II-D apply
for this multi-period example and we motivate certain issues
that arise in the multi-period case. Since the algorithms which
we describe are executed prior to the initiation of the demand
response event, the aggregator must provide a complete vector
c = (ct), t = {0, ..., NT − 1}, of set-points, where NT is
the horizon of the event. In this paper we assume that the
aggregator has advance knowledge of these set-points or can
estimate them accurately, however in future work we wish to
explore the possibility for adapting our settlement mechanisms
to a real-time setting where the set-points ct are first revealed
and the aggregator then runs an auction.

For the tatonnement mechanism, at iteration k the aggrega-
tor announces a vector of prices λ = (λt), where λt is the
reward for period t. Each participating load i then determines
its optimal response response vector x∗i = (x∗i,t) by solving:

min
xi

Ui,0(Ti,0)+
NT−1∑

t=0

{
Ui,t+1

(
xi,0 . . . xi,t

)
−λt xi,t

}
. (21)

The aggregator then updates the price for each period,
according to:

λk+1
t = λk

t + γk(ct −
NC∑

i=1

x!
i,0(λ)) (22)

where γk is the step size at iteration k, and the process iterates
until price converges.

The supply function bidding mechanism requires the gradi-
ent and Hessian of consumer utility functions at iteration k,
where

∇Ui(xk
i ) =





NT−1∑

t=0

∂Ui,t+1(xk
i,0 . . . xk

i,t)
∂xi,0

...
∂Ui,NT

(xk
i,0...xk

i,NT−1)

∂xi,NT−1




(23)

is an NT × 1 vector with xk
i = ak

i + Bk
i λk, and

∇2Ui(xk
i ) =



∑NT−1
t=0

∂2Ui,t+1(x
k
i,0...xk

i,t)

∂x2
i,0

. . .
∂2Ui,NT

(xk
i,0...xk

i,NT−1)

∂xi,0∂xi,NT−1

...
. . .

...
∂2Ui,NT

(xk
i,0...xk

i,NT−1)

∂xi,NT−1∂xi,0
. . .

∂2Ui,NT
(xk

i,0...xk
i,NT−1)

∂x2
i,NT−1





(24)
is an NT × NT matrix. The supply function parameters
and price are then updated according to Eqs. 14 and 15
respectively.

The implementation of the tatonnement mechanism would
require that the problem of Eq. 21 be solved at the load
location, which places a significant computational requirement
for the processors at the nodes of the network. On the other
hand, only NT parameters are communicated to the aggregator
at each iteration. In contrast, the supply function bidding
iterations of Eq. 14 require simpler calculations at the nodes
of the network, however the amount of information which is
communicated to the aggregator at each iteration is substan-
tially higher: NT parameters for ai and NT ×NT parameters
for Bi. This is the inevitable consequence of the fact that the
Newton method requires more detailed information about the
supply function of the users.

C. Dynamics of demand response

We now describe how the system evolves in a demand
response event for the choice of parameter values which we
described in section III-A. The first frame of Fig. 3 shows the
deviation of temperatures from preferred levels. The system
enters a steady state, in which each customer is subject to
a specific deviation from preferred temperature. It is easy to
show that for each setpoint c announced by the system operator
consumers respond, in steady state, with a unique combination
of temperature deviations from their preferred setpoints. On
average, users deviate 0.53 to 1.33 degrees from their preferred
temperatures. Due to the market clearing equality constraint,
the system cannot enter its steady state immediately. As a
result, temperatures follow an optimal transient trajectory and
gradually merge to their steady state values.

The second frame shows the amount of energy rationing
for each consumer. The level of rationing varies between
customers, with stringent users as well as users with worse
thermodynamic characteristics in their homes undertaking a
smaller responsibility. In the first period there is an apparent
impulse in the applied control, as users rush to enter their
optimal temperature trajectories, shown in the previous figure.
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Fig. 3. Demand response dynamics (ρ = 2).

The third frame shows the profitability of each consumer.
Consumers make average profits ranging from $0.0018 to
$0.0105 per minute. Profits become negative towards the end
of the event due to the fact that there are few periods left in
the horizon and users are not accounting for future discomfort
due to temperature deviations so they are providing supply
curves which are tolerant, thus driving the market price down.
This could be prevented by imposing terminal conditions on
the room temperatures. Terminal conditions could also prevent
the well-known rebound effect of demand response. The total
revenue of all consumers for demand response in this example
amounts to $4.78.

D. Greedy mechanism
As we described in section III-B, the iterative equations

require an advance knowledge of the time varying set-point c.
In addition, the supply function mechanism places excessive
requirements on communication channels for large horizons,
since the amount of information which is communicated is
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Fig. 4. Price and utility dynamics (ρ = 2).

O(N2
T ). In this section we consider an alternative, heuristic

iteration, where loads solve their problem for a single period
lookahead. i.e. they implement a greedy algorithm without
accounting for the impact of present period actions on future
disutility. Although this approach does not require a-priori
knowledge of set-points and reduces the amount of data which
is communicated, the greedy mechanism is expected to lead to
suboptimal performance. In addition, we demonstrate that this
approach has an adverse impact on the economic profits of
loads by removing their incentive to participate in the demand
response event.

The results of the greedy mechanism are overlaid on those
of the optimal solution in Fig. 3 with broken lines. In the
first and second frame we observe that the greedy mechanism
also enters a steady state, however, the temperature and control
trajectories differ markedly from those of the optimal solution.

The third frame of Fig. 3 shows that consumers receive
negative profits when they implement the greedy mechanism.
This can be attributed to low market clearing prices, as we can
see in the first frame of Fig. 4. Although we calculated that
the aggregator paid $4.78 to loads in the optimal response, the
aggregator pays merely $0.67 when the greedy mechanism is
implemented. The low market clearing prices result from the
greedy bidding behavior of the market participants. Consumers
provide bids which do not account for the impact of their
present actions on their future comfort, therefore their bids
underestimate the true cost of demand response. Consequently,
the resulting market clearing prices are not sufficient to com-
pensate customers for the future discomfort that their present
actions impose. From the second frame of Fig. 4 we observe
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Fig. 5. Convergence results for logarithmic disutility function with NT = 10,
NC = 10, c = 1 kW.

that the system performs suboptimally, although the greedy
mechanism intially outperforms the optimal solution.

E. Covergence speed

In this section we compare the convergence speed of
the tatonnement mechanism and the supply function bidding
mechanism. We test the two mechanisms for the utility func-
tion of Eq. 20 with exponent ρ = 2.5. In order to compare
the robustness of our comparison, we also test an alternative,
logarithmic utility function:

Ũi,t(Ti,t) = − log(Tmax − Ti,t)− log(Ti,t − Tmin), (25)

where Tmin = 63, Tmax = 83. The convergence of the two
mechanisms is shown in figure for the logarithmic utility func-
tion. The results for the exponential utility function are nearly
identical. In both cases the Newton based method converges
in three steps, whereas the subgradient method, implemented
with a constant step size, requires a few hundred steps before
approaching the optimal solution. Moreover, the subgradient
method requires manual tuning of the step size. The Newton
method is clearly preferable in terms of computation speed.
The tradeoff, as we discussed in section III-B, is the additional
burden which is placed on communication channels, as well as
the fact that it requires a more detailed knowledge of consumer
utility functions.

In order to motivate the applicability of our method in a real-
world setting we present the solution times of the proposed
mechanisms in table I for large-scale systems for a horizon

TABLE I
SOLUTION TIMES FOR LARGE-SCALE APPLICATION (SEC)

NC = 100 NC = 1000 NC = 10000
Tatonnement 115.90 1087.3 12897

Supply function 1.43 29.57 1645.7

of 60 minutes. We are using the logarithmic utility function,
with 600 iterations for the tatonnement mechanism, and 5 iter-
ations for the supply function mechanism. The computational
requirements of both mechanisms are O(N3

T ) for parallel
operation. The results of table I do not account for the parallel
nature of the system, and are therefore O(NCN3

T ), and also
do not account for communicaiton delays, which especially
impact the tatonnement mechanism. Communication delays
and differences in computation times among local processors
motivate future work on whether the proposed algorithms
converge in an asynchronous setting.

IV. CONCLUSION

We propose a market-based control mechanism for im-
plementing demand response, which relies on affine supply
function bidding. We show that the mechanism results in an
economic equilibrium, and we interpret the mechanism as a
dual decomposition algorithm. We compare our mechanism to
a tatonnement mechanism and explain the tradeoffs in terms
of computational requirements, communication requirements
and convergence speed. We apply our methodology for the
case of air conditioning demand response, and we point out
that heuristic mechanisms may have adverse impacts on both
system performance as well as economic incentives.
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