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Abstract—In this paper we propose a direct coupling of re-
newable generation with deferrable demand in order to mitigate
the unpredictable and non-controllable fluctuation of renewable
power supply. We cast our problem in the form of a stochastic
dynamic program and we characterize the value function of
the problem in order to develop efficient solution methods. We
develop and compare two algorithms for optimally supplying
renewable power to time-flexible electricity loads in the presence
of a spot market, backward dynamic programming and approx-
imate dynamic programming. We describe how our proposition
compares to price responsive demand in terms capacity gains
and energy market revenues for renewable generators, and we
determine the optimal capacity of deferrable demand which can
be reliably coupled to renewable generation.

I. INTRODUCTION

Renewable power is emerging as a mainstream source of
energy supply in power systems. Various policy thrusts are
promoting the advent of renewable power in the United States
and around the world. Twenty four states and the district
of Columbia have set renewable portfolio standards, which
commit electric utilities to procure at least a certain percentage
of their energy from renewable energy sources. California set
the example in 2006 by establishing a renewable portfolio
standard which now requires that the state cover 33% of
its electricity demand from renewable energy sources. In an
effort to coordinate efforts at a national level, the federal
government voted for the American Clean Energy and Security
Act in 2009. Among its various measures, the legislation sets
a 20% renewable electricity standard at the national level, and
requires that US emissions be reduced by 17% compared to
their 2005 levels.These legislative measures signal the deter-
mination of the United States, the lead consumer of energy
globally, to utilize renewable energy at an unprecedented scale.

Integrating large amounts of renewable energy in power
systems presents a host of new technological challenges to
power systems operations. In this paper we focus on exploit-
ing flexibility in electricity consumption in order to balance
renewable energy supply. Renewable energy sources such as
wind power and solar power are supplied in unpredictable and
highly variable rates. We cannot forecast renewable generation
accurately, and even if we could these energy sources are

highly variable. These inherent characteristics of renewable
energy sources place them in a competitive disadvantage
compared to traditional fossil fuel energy sources.

A. The nature of the problem

The scheduling of power system operations is highly com-
plicated by the requirement of maintaining a continuous
balance between the supply and demand of electricity, in
order to prevent instabilities in the grid. The scheduling of
power system resources is already a highly complex task, and
introducing renewable energy sources in significant amounts
further complicates this task.

The unpredictability of renewable power supply may cause
imbalances to the system which require expensive deviations
from day-ahead dispatch schedules. Starting up or shutting
down units to compensate for a sudden change in renewable
power supply may take hours, lead to additional air pollution,
result in wear and the need for frequent maintenance of startup
units, and upset system dispatch due to the minimum genera-
tion capacity of startup units. Such large scale disturbances in
renewable power supply can occur during storms in systems
with large amounts of wind power.

The minute-by-minute variability of renewables imposes a
requirement for primary control, generators which can rapidly
adjust their power output in response to an unanticipated event.
Moreover, secondary control units are necessary which can
back up and dismiss primary control units. Since renewable
supply also tends to vary rapidly and in great magnitude, an
additional backup of ramping generators is necessary.

In a British report by the UK Energy Research Center [1]
the authors assembled a variety of wind power integration
studies with the objective of estimating the costs and impacts
of intermittent generation on the UK electricity network. Over
80% of the studies that the authors examined concluded
that for wind power energy penetration levels above 20% an
investment in system backup in the range of 5-10% of installed
wind capacity is required in order to balance the short term
(seconds to tens of minutes) variability of wind power supply.
The authors conclude that additional conventional capacity to



maintain system reliability during demand peaks amounts to
15-22% of installed wind power capacity.

The California Independent System Operator published a
report recently [2], which analyzes the integration of 6700
MW in the California grid. According to the study the 3-hour
morning ramp of will increase by 926 MW to 1529 MW due to
the fluctuations of wind generation at the time when morning
demand increases, and the evening ramp will decrease by 427
MW to 984 MW. The regulation capacity requirement will
increase by 170 to 250 MW for regulation up and by 400
to 500 MW for regulation down. The regulation ramping will
increase by ± 15 to ± 25 MW/min. The load following ramps
will increase by ± 30 to ± 40 MW/min.

Various systems absorb large amounts of hydroelectric
power. During the months that snow melts and hydroelectric
power supply increases and must be absorbed, the addi-
tional generation of renewable energy causes an over-supply
problem. It is also possible that renewable energy supply
increase during the night and abate during daytime, hence
renewable generation is negatively correlated with electricity
consumption.

B. The Effects of the Problem
The costs associated with renewable power integration result

from the offset of variability by stand-by generators and the
requirement for investments on system backup. These costs
are captured by market tariffs and may be allocated to the
whole market or directly to renewable generators, depending
on market regulations. Research and experience indicate that
integration costs range between 0 and 7$/MWh [3], [4]. The
UK study mentioned above [1] placed an estimate of no more
than 5 British pounds for wind power integration. Another
recent study conducted by Enernex for wind power integration
in Minnesota [5] concludes that the cost of additional reserves
and costs related to variability and day-ahead forecast errors
will result in an additional $2.11 (15% penetration) to $4.41
(25% penetration) per MWh of delivered wind power. In a
similar vein, the CAISO report [2] has predicted an expected
increase in 10-minute real time energy prices due to wind fore-
casting errors which become comparable to load forecasting
errors.

Renewable energy may be discarded during hours of excess
renewable power supply if power systems cannot reliably
absorb this supply [3], [6]. During early spring the California
system operator either spills water supplies from hydroelectric
dams or discards wind power [2]. Wind power is also discarded
under normal operating conditions in California whenever
forecasting underestimates the amount of wind power supply
to the system and the excess power cannot be sold. In Texas
the system operator discards wind power during load pick-up
for reliability reasons [7].

Though the integration of renewable energy is increasing,
an integration level beyond 20% is not perceived as eco-
nomical (integration levels count 20% in Denmark, 9% in
Spain, 7% in Germany, and California is aiming for 33%
by 2030). Assuming capital costs for renewable power will

continue to decline in the future, one of the major challenges
for the large scale integration of renewable energy will be
its variability. Currently renewable generators operate under
favorable regulations in many markets. A number of system
operators in Europe (Denmark, Greece) and the United States
(PJM, NYISO, CAISO, Ontario IMO) accept wind generation
on a priority basis [8]. It is clear that this preferential treatment
has its limitations. Large scale renewable power integration
cannot rely on regulatory support alone, but will also require
technological improvements. The utilization of demand side
flexibility creates an excellent opportunity for addressing this
problem.

C. Demand side flexibility

Across the full spectrum of residential, commercial and
industrial consumption, a significant proportion of the power
that we generate is supplied to loads which are time flexible,
deferrable for a few minutes or hours at little or no cost.
Examples abound: electric vehicles, heating, ventilation, air
conditioning, thermostats, refrigeration, agricultural pumping,
controllable lighting. These time flexible demand side re-
sources could adapt their energy consumption according to
the fluctuation of renewable power supply in order to counter-
balance the resulting supply variations and enable large scale
integration of renewable energy without significant impacts on
grid operations.

With the appropriate communications and control infras-
tructure is in place, flexible loads can be manipulated as
controllable resources by the system operator, in much the
same way that generators are actively controlled today [9].
In the same fashion that generators communicate a set of
operating characteristics to the system operator (marginal
cost, minimum and maximum generation limits, minimum
and maximum ramping limits, minimum up and down time)
which then determines their dispatch such that the cost of
operating the system is minimized, loads could also declare
certain parameters to the system operator which characterize
their flexibility, such as their required energy demand and a
deadline by which this demand should be met. These load
resources can then be dispatched in a least-cost fashion, such
that their demand is met within their designated deadline. Due
to the fact that resources such as wind and solar power operate
at near zero marginal cost, renewable energy sources are an
excellent candidate for fulfilling such flexible energy requests.

In order to address the problems raised above, we propose a
paradigm whereby the demand of flexible consumers is regu-
lated by a central scheduler which receives requests for energy
consumption within a certain deadline, and decides how the
available renewable resources are allocated to consumers. The
scheduler commits to satisfy consumers by their deadlines, if
necessary by resorting to an electricity spot market in order to
procure energy at the last minute. This gives rise to a stochastic
optimal control problem.



II. ALGORITHMS

In this section we define the stochastic dynamic program-
ming problem at hand, certain properties of the value function
and two dynamic programming algorithms for solving the
problem. We then compare the performance of these algo-
rithms in terms of computation time and performance.

A. Problem Formulation

Consider a renewable power supplier which has entered
an agreement to supply a certain amount of energy to a
customer within a certain deadline. The renewable resource
supplier has a contractual obligation to fully satisfy customer
demand, either through renewable energy supply or through
spot market purchases. The objective is to determine the
optimal spot market strategy for the supplier, i.e. when it is
worth procuring energy from the spot market in order to satisfy
residual demand, and how much energy should be procured at
each period.

Our problem has a three-dimensional state vector, xt =
(λt, st, rt), where λt is the spot price of the resource, st is the
amount of resource which is freely available and rt represents
the remaining quantity of demand. In what follows we will
also use the notation xt(i) to denote the i-th coordinate of
the state vector for period t. Hence, λt = xt(1), st = xt(2)
and rt = xt(3). The residual energy rt evolves according
to rt+1 = rt − ut, where ut, our control, is the amount
of power supplied to the consumer in period t. We assume
that the two-dimensional stochastic process (λt, wt) can be
described by a non-stationary Markov transition probability
matrix, Pt[λt+1 = λ′, st+1 = s′|λt = λ, st = s], which we
denote generically as pt(x, x′), where x denotes the current
period state vector and x′ denotes the state vector of the next
period.

The objective is to minimize the following expected cost:

min
µt(xt)

E[
N−1∑

t=1

λt(µt(xt)− st)+]∆t, (1)

where µt(x) represents the rate at which the resource is
supplied and N is the number of periods. The state vector is
associated with the following initial and terminal conditions:
r1 = R, rN = 0, where R is the amount of demand to be
satisfied. The control ut cannot exceed an upper bound on the
rate of supply, ut ≤ C. Each interval of the problem has a
duration of ∆t units of time.

Although the problem has been cast from the point of
view of a renewable power supplier, one can consider the
same problem facing a smart switch installed in any flexible
energy consuming device (e.g. a pool pump or a refrigerator)
which responds to renewable energy signals. Moreover, we
present here the problem of a single customer, but the same
problem applies for the case of multiple customers with
identical quantities of energy demand R, deadlines N , and
rate constraints C.

B. Backward Dynamic Programming
The backward dynamic programming algorithm is given by

the following equation:

Jt(x) = max
u∈Ut(x)

{g(x, u) +
∑

y∈St+1

pt(x, y)Jt+1(y)} (2)

where Jt(x) is the value function of period t, g(x, u) = λ(u−
s)+∆t is the cost incurred at each period, Ut(x) is the feasible
region of actions for period t, and St is the feasible region of
the state vector at period t. Backward dynamic programming
can yield the optimal policy in principle, however in the worst
case it can require as many as N · |S|2 · |U | operations [10],
where |S| is the cardinality of the state space, and |U | is the
cardinality of the action space, assuming the state and action
spaces have equal cardinality for each period.

C. Structure of the Value Function
We now present two results about the structure of the value

function in the case where the action and state space are con-
tinuous, which assist us in the development of an approximate
dynamic programming algorithm for this problem. For the case
of continuous action and state spaces, our actions are con-
strained in the following interval: Ut(xt) = [at(xt), bt(xt)],
where bt(xt) = C ∧ rt and at(xt) = bt(xt) ∧ (rt − C(N −
t− 1))+.

Proposition 1: The value function Jt(x) is convex in r =
x(3) for all t.

Proof:
We will prove the argument by induction, starting from

period N − 1. We know that

JN−1(xN−1) = λN−1(rN−1 − sN−1)+∆t, (3)

so the hypothesis holds for N − 1.
Now suppose that the hypothesis is true for all k up to

k ≥ t + 1. Consider the Q-factor at period t, Qt(xt, u):

Qt(xt, u) = λt(u− st)+∆t+EJt+1(λt+1, st+1, rt−u). (4)

We now use various convexity preservation arguments from
[11]. Since Jt+1(λ, s, r) is convex in r and r−u is convex in
(r, u), Vt+1(λ, s, r − u) is convex in (r, u). The expectation
operator preserves convexity so EJt+1(λt+1, st+1, rt − u) is
convex in (r, u). λ(u− s)+∆t is also convex in (r, u). Since
we are minimizing a convex function in (r, u) over u, with
u constrained in the convex set Ut(xt), the resulting function
Jt(xt) is convex in r and the desired result follows.

Proposition 2: Suppose that there are finitely many random
outcomes in each period. Then the value function in period t,
Jt(x), is piecewise affine convex in r:

Jt(λ, s, r) = ∨n(t)
i=1 (ai(t)r + bi(t)) (5)

for some constants ai(t), bi(t), i = 1, .., n(t).
Proof:



Again, we will prove the argument by induction. From
equation 3 the induction hypothesis holds for period N − 1.
Suppose that the hypothesis holds for all periods up to period
t + 1 and denote Ωt as the set of random outcomes in period
t. Then for period t we have from the Bellman equation:

Jt(λ, s, r) = min
u∈Ut(xt)

{λ(u− s)+∆t

+
∑

ω∈Ωt

pt(ω) ∨n(t)
i=1 (ai(t)(r − u) + bi(t))}

= λ(u∗ − s)+∆t

+
∑

ω∈Ωt

pt(ω) ∨n(t)
i=1 (ai(t)(r − u) + bi(t))

=
∑

ω∈Ωt

pt(ω) ∨n(t)
i=1 (ai(t)(r − u∗) + bi(t)

+λ(u∗ − s)+∆t)
(6)

where u∗ is the minimizer of the right hand side, which
must exist since we are minimizing a convex function over
a line segment. Now the result follows from the fact that the
weighted sum of piecewise linear convex curves is a piecewise
linear convex curve.

D. Approximate Dynamic Programming

In order to scale our control policy to more complex
conditions with multiple loads, random arrival and departure
times, and random energy requests, we develop an approxi-
mate dynamic programming algorithm which can perform ad-
equately in this simple problem. Although backward dynamic
programming is perfectly adequate for solving this problem,
it will become computationally intractable to consider the
more complex conditions which we described, but backward
dynamic can still be useful in providing a benchmark to
compare our approximate algorithm for this simple instance
of the problem.

We will approximate the Q-factors of the problem [12] with
a set of basis functions, Q(x, u) =

∑
k∈K rkφk(x, u), where

K is the set of basis functions, φk(x, u) are the basis functions
and rk are the weights of the bases.

We have selected the basis functions for this problem as
follows: φ1(x, u) = 1 is the constant function. φ2(x, u) =
(x(3)−u−(N−t)C)+ is the amount of remaining energy that
would need to be fulfilled if we were to charge at a rate u for
the current period and charge at full rate after that. φ3(x, u) =
x(1)(u− x(2))+∆t is the cost incurred at the current period,
g(x, u). We have also created one basis function for each
state and the time index, φ4(x, u) = k, φ5(x, u) = x(1),
φ6(x, u) = x(2), φ7(x, u) = x(3). Finally, we have created a
set of basis functions which can be used to create a piecewise
linear approximation of the Q-factors in the third coordinate of
the state space, φk+8(x, u) = (r−u−kC)+, k = {0, ..., 14}.
This is motivated by the result which we have proven about
the structure of the value function.

We will implement the SARSA algorithm [12] for this
problem with a linear approximation for the Q-factors and a

temporal difference algorithm for the update of the basis func-
tion weights. For the learning rate of the basis function weights
we have chosen a step-size of γ(t) = 10, 000/(10, 000+t−1),
scaled appropriately [13]. We are also using Boltzmann explo-
ration in order to facilitate the exploration of the state space,
with a Boltz exploration constant of β = 10−4. The SARSA
algorithm consists of the following steps:

• Select control ut with probability

exp(−β
∑

k rkφk(xt, ut))∑
u∈Ut(xt)

exp(−β
∑

k rkφk(xt, ut))
.

• Given a state/action pair (xt, ut), generate a new state
xt+1 according to the transition distribution pt(xt, xt+1).

• Update the basis weights,

rk = rk + γ(t)φk(xt, ut)(g(xt, ut)
+

∑

k∈K

rkφk(xt+1, ut+1)−
∑

k∈K

rkφk(xt, ut) (7)

E. Data
In order to calibrate our stochastic model, we have used

wind data from the National Renewable Energy Laboratory
database for 10-minute wind generation at a typical site in
the Techahapi region, and 10-minute settlement average pries
from the Oasis database for the dates between September 1,
2006, and November 30, 2006.

The wind generation data is based on the output of a park
of ten Vestas V90 3 MW wind generators. In particular, we
used the hysteresis-corrected SCORE data, as explained in the
NREL website1.

The wind generation data ranges from 0 to 30 MW, and
the price data ranges from -20$\MWh to 180$\MWh. For
the derivation of the probability transition matrix, price values
below -20$\MWh and above 180$\MWh are assumed to be
equal to -20$\MWh and 180$\MWh, respectively. Given that
such prices did not occur frequently in our dataset, this mod-
eling assumption does not affect the derived stochastic model
significantly. The transition probability matrix is derived by
sampling the conditional probability of transitioning from one
price-wind combination to any other price-wind combination
for each 10-minute interval of the day. For the greatest possible
resolution that we explored, 10 wind states and 10 price states,
there are 100 wind-price combinations, and a sample of 91
transitions.

F. Aggregating States and Actions
As we described in section II-B, computation time is

sensitive to the size of the state and action spaces. There
is a tradeoff involved in aggregating states and actions: by
aggregating we sacrifice in terms of the performance of the
optimal solution in order to achieve faster computation of the
optimal policy. Aggregation implies that we may be making
decisions of lower quality due to the fact that we are not able to
finely distinguish between different values of wind power and

1http://www.nrel.gov/wind/integrationdatasets/western/methodology.html
#output



TABLE I
COST PERFORMANCE AND COMPUTATION TIME FOR VARIOUS LEVELS OF

STATE AND ACTION SPACE AGGREGATIONS.

|U | Nw Np |S| Sol. time (s) Cost ($) St. dev. ($)
10 10 10 89,200 812.365 11,600 8,251
5 5 5 9,925 199.399 12,137 8,365
2 5 5 2,500 72.915 12,601 8,131
2 3 3 900 42.904 12,791 8,228

market prices, or even if we are able to distinguish between
states, we may not be able to differentiate our control. This
tradeoff is presented in table I. In the experiments that we have
run to derive this table, we assume that the maximum control
is 30 MW, and we are set to fulfill a total demand of 2970
MW-10min. Wind ranges between 0 and 30 MW, and prices
range between -20 and 180$/MWh. The results derived in the
table are derived from testing the algorithm against the actual
91-day sample of data.

As expected, we observe that as we increase the granularity
of our state and action space the computation time increases
and the performance of the algorithm improves. The variance
in the performance of the algorithm does not vary significantly
and is not monotonically increasing in the level of aggregation,
as one might expect. In fact, the maximum and minimum of
cost performance varies between $200 and $36,138 and is
similar for all levels of aggregation. This very large difference
stems from the very different nature of the wind and price
outcomes in different days, and increasing the granularity of
the state and action spaces does not help improve performance
for a given sample outcome of wind and prices. The most
surprising and practically relevant conclusion from this table
is that aggregation results in a surprisingly low deterioration
of performance. Comparing the first and last row of the table
we observe that the solution time increases 19-fold from 43
seconds to about 13.5 minutes, yet the cost decreases by
merely 9.31%.

An action state consisting of 2 elements, U = {0, C},
reduces to a switching control where we either turn the load
on at its nominal consumption level or turn it off. Most loads
can only be operated at an on-off state anyways, and we can
conclude from this table that there are minor impacts on our
performance by restricting attention to a switching control.

G. Comparison of Algorithm Performance

In table II we present the performance of the approxi-
mate dynamic programming algorithm for the same problem
instances as those which are presented in table I. The ap-
proximate dynamic programming algorithm requires the same
amount of time for all cases, since we are keeping the number
of iterations fixed at 50,000. For the case where we are
solving for 10 actions and 100 combinations of price and
wind, the approximate dynamic programming algorithm is
16.7% suboptimal, although it runs in less than 1/3 of the time
that the backward dynamic programming algorithm requires.
It turns out that increasing the number of iterations does not
improve the performance of the algorithm, and the loss in

TABLE II
PERFORMANCE OF SARSA ALGORITHM FOR VARIOUS LEVELS OF STATE

AND ACTION SPACE AGGREGATIONS.

|U | Nw Np Sol. time (s) Cost ($) St. dev. ($)
10 10 10 242.576 13,539 10,649
5 5 5 239.944 12,368 8,162
2 5 5 238.224 12,703 8,190
2 3 3 238.109 13,114 9,345

performance can therefore be attributed to the selection of the
basis functions. Nevertheless, for higher levels of aggregation
the algorithm performs very close to optimal. This reassures
us that if we are willing to aggregate the action and state
space sufficiently, then we have made a good selection of
basis functions, which provides starting ground for scaling
the algorithm to more complex versions of the problem, e.g.
with random arrival and departure times or random quantities
of energy demand. Such variations of the problem cannot, in
general, be solved by the backward dynamic programming
algorithm efficiently, and are best dealt with by approximate
dynamic programming techniques. This is work which we
wish to explore further in future research.

III. ECONOMIC ANALYSIS

In this section we discuss the economic implications of di-
rectly coupling renewable generation with deferrable demand
by comparing it to a baseline scenario whereby renewable
generators participate in the market with a reduced capacity
credit and deferrable loads participate in the market with the
objective of minimizing their expenditures.

In order to assess the value of coupling renewable gener-
ation with deferrable loads, we compare it to a case where
both resources respond to price signals without actively coor-
dinating. In the case where renewables and flexible consumers
coordinate their operations wind appears ’behind the meter’ for
the system operator, and the spot market is utilized in order to
correct for unanticipated deviation in the supply of renewable
energy in advance of an emergency shortage in supply, which
is an economic alternative to resorting to backup generation
for supporting renewable power variability.

A. Capacity Credit
As we discussed in the introduction, renewable generators

which funnel their entire production to the grid cause various
operational problems due to the fluctuation of their supply.
In California this deterioration in performance is penalized
by charging renewable generators penalties for deviating from
their forecast production. Such deviation penalties can capture
the impact of renewable power variability on the economic
performance of wind generators, as described also in the
literature by Bathurst et al. [14], Matevosyan and Soder
[15] and Pinson et al. [16]. In other markets, such as PJM,
renewable generators receive partial credit for their available
capacity, reflecting the fact that the system operator cannot
securely rely on the entire capacity of these resources at critical
hours of grid operations, but must instead procure standby
capacity. In this paper we use capacity credit as a metric for



the impact of renewable power variability on the economic
performance of renewable generators.

We assume that capacity earns a credit of 1440$/MW, which
we have calculated by continuous compounding of a $2 million
investment in 1 MW of new capacity at 8% interest rate
for a payback period of 10 years. In the baseline scenario
we assume that renewable generators receive a 30% capacity
credit. In the case where the resources are coupled, renewable
generators earn full capacity credit for the average capacity of
the deferrable loads which they serve. However, it is natural
to expect that the incremental ability of renewable generators
to serve deferrable loads deteriorates as more and more
deferrable capacity is reserved by renewable suppliers, since
renewable generators will need to resort to the spot market
more and more frequently. We model this as a deterioration
of the capacity credit for the coupled system. In particular, we
simulate the performance of the smart charging algorithm for
the entire horizon of the 91 days of sample data, and we count
the average amount of power procured by the algorithm for the
periods of peak demand. Peak demand periods are identified as
those periods of the sample data during which the spot price
of electricity exceeded 350$/MWh. Such an event occurred
45 times in our 91-day data. This average quantity is then
subtracted from the average capacity of the deferrable loads,
and represents the derated capacity of the coupled system.

B. The Value of Coupling
The value of coupling renewable generation to flexible

demand arises from the fact that renewable generators earn
capacity credit in proportion to the capacity of the flexible
loads which are served by the renewable power provider.
In return for this increased credit, renewable generators re-
serve their entire supply for deferrable loads, and assume
the responsibility of providing capacity service to deferrable
loads. The tradeoff, then, for renewable generators is to gain
capacity credit by contracting with deferrable loads which are
sufficiently flexible to be served reliably by smart charging,
versus earning energy revenues by supplying electricity to
the market at reduced capacity credit. The total demand of
deferrable loads which are served determines the balance
between the costs and benefits of coupling. In this section
we determine the total demand of deferrable loads which
maximizes the value of coupling.

By testing our proposition against price responsive demand,
we are essentially comparing to the alternative of pooling all
resources in the market. By coupling the aggregator receives
economic gains by relieving risk from the system operator.
Entering a contract to supply power within a deadline is
much more flexible than the strict reliability criteria applied
by the system operator, which will match any amount of
load capacity, regardless of its flexibility, with a corresponding
capacity of backup.

In figure 1 we present the net supply of power for cou-
pling versus utilizing price-responsive demand for one sample
outcome of prices and wind power supply. In the third frame
we show the remaining energy to be fulfilled for both the
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Fig. 1. Coupled operations versus price response.

coupled and decoupled case, and in the fourth frame we show
the demand of power from deferrable loads net of the wind
power supply. From the fourth frame we observe that the net
demand profile of the coupled system is much smoother than
the one resulting from price-based response. By observing the
difference in the energy supply patterns in the lower right
frame, we can conclude that the consumption patterns of
the loads differ significantly. In the first periods the coupled
system utilizes wind power, which is abundantly available,
whereas the deferrable loads which simply respond to spot
market prices fail to absorb the excess wind power. Towards
the end of the horizon, the wind generators continue to supply
power in the decoupled case, whereas in the coupled case this
wind is discarded because loads have been fully served.

C. Simulation Results

In table III we see the capacity credit earned by the coupled
system, according to the methodology described in section
III-A. We are simulating a 30 MW wind generator which is
serving varying amounts of deferrable demand. Rather than
specifying the total energy demand, we specify slack,

S =
C · N

R
, (8)

which is a metric of how flexible we are in terms of postponing
charge. Slack is the ratio of the total energy that would be



TABLE III
CAPACITY CREDIT FOR VARIOUS LEVELS OF SLACK.

Slack 2.4 1.8 1.44 1.2 1.03
Capacity served (MW) 12.40 16.56 20.73 24.90 29.06

Capacity required (MW) 0.91 2.43 3.22 4.18 9.88
Capacity credit (MW) 11.49 14.13 17.51 20.72 19.18

TABLE IV
VALUE OF COUPLING (ALL FIGURES IN $/DAY).

Slack 2.4 1.8 1.44 1.2 1.03
Energy rev (B) 12,404 12,404 12,404 12,404 12,404
Energy cost (B) 11,435 15,578 20,054 24,667 31,358

Capacity credit (B) 10,975 10,975 10,975 10,975 10,975
Energy cost (C) 4,114 6,811 9,519 13,479 19,195

Capacity credit (C) 14,007 17,234 21,375 25,264 23,390
Coupling value -2,146 2,884 8,082 12,948 12,147

absorbed by loads if they were to consume at nominal capacity,
over the energy demand that these loads have specified within
the horizon. The closer slack is to one, the less flexibility
in postponing charging, and the opposite is true as slack
increases.

The first line of the table refers to the average capacity of
the deferrable loads which are served and therefore increases
in proportion to R, the second line is the amount of capacity
utilized from the spot market during periods of peak demand -
hence the capacity derating - and the third line is the difference
of the two. We observe that for S = 1.2 the amount of capacity
credit peaks. As deferrable demand increases, the amount of
capacity required from the spot market exceeds the average
amount of deferrable demand which is served.

In table IV we calculate the value of coupling versus pooling
resources in the market. The results are average values from
running a stochastic model with 5 wind states, 5 price states
and 3 actions. We have run 1,000 simulations for each level
of slack.

The first three line of the table refer to the baseline (B)
scenario where we are pooling all resources in the market.
The first line is the revenue earned by wind generators which
supply all of their energy to the market and earn market
prices. This value does not depend on the demand of deferrable
loads, and therefore remains constant. The second line is the
procurement cost of flexible loads, which fulfill their demand
by buying from the spot market during periods of low market
prices. We have derived these figures by solving a stochastic
dynamic program for the loads, which is similar to the problem
formulated in section II-A, with the difference that the cost
per period is g(x, u) = λu∆t, i.e. the cost of procuring
energy from the spot market. The third line is the daily dollar
amount of capacity income earned by wind generators for 30%
capacity credit, at 1,440$/MW. The net value of operating wind
and load resources independently is equal to the sum of the
first and third line net the second line.

The fourth and fifth line of table IV refer to the case of
coupled (C) resources. The fourth line is equal to the solution
of the dynamic program of section II-A, and the fifth line is
equal to the capacity credit which is earned for the amount of

capacity calculated in the third line of table III. The net value
of operating the coupled system is calculated by subtracting
the fourth line from the fifth line. Finally, the value of coupling
which is presented in the last line of table IV is calculated by
subtracting the net value of coupling from the net value of the
decoupled system.

We note that the value of coupling peaks at S = 1.2,
which is driven by the fact that capacity credit peaks at the
same level of slack. For the baseline scenario, energy revenues
from selling wind power are offset beyond S = 1.8 by the
expenditures for charging deferrable loads. In the case of
coupling, energy revenues are lost when wind is discarded,
compared to the decoupled case where all wind is supplied to
the market. Finally, we observe that for S = 2.4 the value of
coupling is negative, which implies that the system is better
off by leaving the resources decoupled. This is due to the
fact that coupling results in discarding excessive amounts of
wind power, since deferrable demand is relatively low, and the
resulting capacity gains are not sufficiently large to offset the
opportunity cost of directly supplying energy to the market.

D. Discussion

In this section we point out various assumptions regarding
our analysis and comment on these assumptions. We also
describe future directions of research o on this topic.

Firstly, it is questionable whether capacity credit is a
sufficient metric to identify the gains of coupling. Coupling
renewable energy with deferrable loads not only makes re-
newable capacity appear more reliable but also mitigates a
variety of other problems resulting from renewable generation
profiles which were described in the introduction, such as
ramping and load following requirements. Coupling addresses
these problems too, but this benefit cannot be captured by
capacity credit. Nevertheless, capacity credit is used to reward
generators for their capacity contributions in various power
markets, and therefore seems like an appropriate metric to
be used for our analysis. Using other methods for specifying
the gains of smoothing renewable power output profiles, such
as deviation penalties, is possible, but involves a series of
additional assumptions (e.g. the specific rules pertaining to
deviation penalties) and possibly constrains the analysis to the
cases of specific markets, thereby weakening the generality of
the analysis.

Another strong assumption of our analysis is that we are
rewarding the coupled system the average capacity of the
deferrable loads. This tends to overestimate the value of
coupling, since deferrable loads which respond to spot market
prices tend to consume off peak, rather than spread their
consumption uniformly throughout their consumption horizon.
Hence, in our analysis in section III-B we are capturing not
only the capacity value of coupling but also the capacity
value of load flexibility. This problem could be circumvented
by derating the capacity credit for coupling operations with
deferrable loads, or by estimating the capacity requirements
of deferrable loads through simulation.



In future work we are interested to determine the sensitivity
of our results on the degree of correlation between electricity
prices and wind power availability. In particular, in systems
where wind power is negatively correlated to spot market
prices (which is the case in California), coupling adds value
since deferrable loads absorb power which would otherwise
not be needed, and this can be accurately captured by our
model. The opposite holds true for the opposite case where
renewable generation is positively correlated with spot market
prices. In order to develop a computationally tractable model,
we have been working with recombinant lattices of market
prices and wind power supply, as in [17]. In particular, we
have developed a recombinant model for simulating geometric
Brownian motion which has been calibrated to the data used
in this study, however geometric Brownian motion appears not
to accurately capture the evolution of the processes in our data
set. In future work we will develop a mean-reverting model
such as the one described in [17] which we hope will produce
more accurate results.

IV. CONCLUSION

In this paper we have described a stochastic dynamic
program for optimally supplying energy to deferrable loads in
the presence of a spot market. We have derived properties of
the value function which have guided us in the development of
an approximate dynamic programming algorithm for solving
the problem. We have compared the approximate dynamic
programming algorithm to a backward dynamic programming
algorithm and we have found that the performance of the
approximate algorithm is near optimal for when state and
action spaces are aggregated sufficiently. We have validated
that aggregation does not result in significant performance
losses, and in future work we wish to scale the approximate
algorithm in more complex versions of the problem which
cannot be addressed by backward dynamic programming.

We have determined the economic value of coupling re-
newable generation to flexible demand by comparing the
performance of the coupled system to the alternative of pooling
all resources in the market and using prices as a signal for
coordinating renewable generation and flexible demand. We
have estimated the value of direct coupling by estimating the
capacity credit and energy market expenditures of the coupled
system and comparing them to the case where all resources
are pooled in the market. We have determined the quantity of
deferrable demand which matches optimally to a given level
of renewable generation capacity by maximizing the value of
coupling. In future work we wish to explore the sensitivity
of our results on various assumptions of our study such as
the method for determining capacity credit, as well as certain
model parameters such as the degree of correlation between
market prices and wind power supply.
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