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Abstract—Integrating renewable energy in the electricity mix
raises several challenges for transmission and distribution system
operators. One main challenge relates to the provision of balanc-
ing services from distribution system resources, which requires
that the constraints of the distribution network be carefully
accounted for when deciding on the dispatch of distribution
system resources. In this paper, we present a mixed-integer
second order cone program for solving a real-time dispatch
problem where transmission and distribution are modeled in
an integrated fashion. The model offers promising perspectives
when tested on real instances of the Italian, Danish and Spanish
systems.

I. INTRODUCTION

The integration of renewable energy sources presents novel
challenges which will need to be tackled in order to achieve
the ambitious and immediate renewable energy integration
goals that have been set by policy makers worldwide. One
major challenge relates to the fact that distribution networks
(DN), with increasing amounts of distributed renewable re-
sources, are no longer only consuming power generated by
the transmission network (TN), but also producing power
through distributed renewable resources (such as solar panels),
and also hosting direct and indirect storage (e.g. in the form
of deferrable demand or electric vehicles). According to the
present paradigm, which is rapidly changing, one system oper-
ator is in charge of the high-voltage transmission network, the
Transmission System Operator (TSO), whereas the distribution
network typically absorbs the production. Distribution system
loads are aggregated at a transmission bus and the optimization
of power generation is performed at the transmission level.

With the integration of distributed renewable energy sources
and distributed sources of flexibility, there is an increasing
need for accounting for the low and medium-voltage distribu-
tion network in short-term operations. By ignoring the short-
term operating constraints of distribution networks, which has
been the predominant paradigm to date, the system is limited
in the extent to which it can absorb distributed renewable
energy connected to the distribution network. Because of the
uncertain nature of renewable energy sources and flexibility
mechanisms like demand-side management, the Distribution
System Operator (DSO) will need to assume a more active role
in operating the network. In the coming years, the objective
will be to maintain the existing quality of service in the supply

of power while utilizing renewable resources to the greatest
possible extent [1].

This paradigm shift challenges the conventional approach
towards interfacing TSO and DSO operations, and requires
increased coordination in order to operate the system ef-
ficiently and securely. TSO-DSO coordination is currently
receiving an increased amount of attention by practitioners and
the research community [2], [3], [4]. Rather than examining
coordination schemes for harmonizing TSO-DSO operations,
this paper will consider a centralized version of transmission
and distribution network operations. Indeed, even if it could
be unrealistic to consider one operator handling the complete
transmission and distribution network, this would provide a
benchmark for examining the extent to which alternative TSO-
DSO coordination schemes can be compared.

The model that we investigate is inspired by the EU
SmartNet project on transmission and distribution operational
coordination [5]. The data used in the case study is also
based on SmartNet. Following the problem posed in SmartNet,
we are not investigating the commitment of reserves in a
coordinated fashion, but rather the activation of reserves for
the purpose of balancing, assuming that these reserves have
already been committed. The broader problem of committing
reserves is treated by Ntakou et al. [6] and falls out of the
scope of this paper.

We are specifically interested in the activation of reserves
in the real-time market, where the dispatch decisions can be
seen as adjustments on a predefined dispatch that results from
earlier processes. In real time, the goal is to deploy reserves
that have been cleared in a previous reserve capacity market
(day-ahead for example) and to make sure that renewable
energy resources are balanced properly.

Optimizing dispatch decisions in real time while accounting
for the complete transmission and distribution network is
challenging for various reasons. The distribution network re-
quires a more precise representation of non-linearities than the
transmission network and the power flow equations cannot be
as simplified as is common practice for transmission networks.
The simplification that is performed in transmission networks
can be justified by the minor role of losses, the reduced
significance of reactive power flows, the less significant role
of voltage constraints, and a number of other technical factors.



In distribution networks, these approximations are no longer
acceptable and a more precise representation of the power flow
equations is needed [6].

In order to account for the non-linearity of power flows,
in this paper, we resort to the Second Order Cone (SOC)
relaxation introduced by Jabr [7] and used in [8], [9], [10].
In the distribution system markets considered in this paper,
the production or consumption bids that are bid into the
market can be associated to specific features such as temporal
linking, an exclusive choice of bids, a minimum duration for
accepted bids, and other non-convex constraints. This will
have two effects: (i) it will necessitate the introduction of
binary variables in the market clearing problem, and (ii) the
temporal linking implies that we will need to consider the
problem over a certain time horizon. Concerning the first
item, we present in this paper the market clearing model
developed by SmartNet [11] for the detailed description of the
bid constraints. Regarding the inter-temporal linking, we will
make the common assumption employed in various systems
that the real-time market is cleared every 15 minutes. We will
limit the horizon of the optimization to 1 hour, resulting in
a time horizon of at most 4 time steps. We will therefore
assume an observable deterministic output from renewable
energy sources and distributed loads, since forecasts on very
short time frames tend to be quite precise.

The objective of our work is to provide a Mixed Integer
Second Order Cone (MISOC) representation of the transmis-
sion and distribution real-time dispatch problem and show
preliminary results on realistic instances of the Italian, Danish
and Spanish networks. The novelty of the work is on (i)
the detailed formulation of a coordinated transmission and
distribution auction (Sections II and III), (ii) the presentation
of results on three case studies of realistic scale, and (iii) the
comparison of MISOC against linear approximations of the
power flow equations as well as a comparison of CPLEX and
Gurobi to solve this kind of problems (Section IV).

We will present the general assumptions that are employed
in our paper in section II. We will then develop the real-time
dispatch problem in section III. We will present the results
on the realistic test cases considered in section IV before
concluding in section V.

II. GENERAL ASSUMPTIONS

A. Topology of the network

We adopt the following assumptions about the network,
following [6]:
• The transmission network includes high-voltage produc-

ers (conventional generators), industrial consumers and
large renewable energy resources such as utility-scale
wind and solar power. The transmission network is as-
sumed to be meshed. We use the direct current approxi-
mation of the power flow equations which is a common
assumption when considering high-voltage networks.

• The distribution network hosts low-voltage renewable
energy sources such as solar panels, flexible direct and

indirect storage such as electric vehicles, and residential
loads. We assume that the network is radial and use
the second order cone relaxation of Jabr for representing
power flows in the distribution network. This relaxation is
proven to be exact under mild assumptions that we do not
satisfy in general in this paper. Nevertheless, experimental
evidence and theoretical analysis suggests that the second
order cone relaxation provides high quality results for
radial networks [9], [12], even if the required assumptions
for exactness are not met.

We consider a single transmission network connecting to
several distribution networks, in line with the typical lay-
out of a national T&D network. Transmission networks and
distribution networks are connected through interface nodes
(denoted by N∞), with one interface node corresponding to
each distribution network. Interface nodes are assumed to
belong to distribution networks. We assume that aggregations
of producers and consumers at each node of the distribution
network are represented by a single marginal supply function
that represents the marginal cost of reserve activation.

B. Bid structure

The market clearing model presented in this paper is in-
spired by the products that are available in the Central Western
European (CWE) day-ahead energy market. The first unit that
we will use in order to define a complete bid is the segment
bid. A segment bid (or S-bid) is characterized by a minimum
and maximum quantity of real power and a certain marginal
cost. Note that we allow consumption and production bids, so
we have no assumptions on the signs of the minimum and
maximum quantity. A Q-bid links several segment bids. We
make explicit the relationships between segment bids when
defining bid constraints in section III. We also link Q-bids
over time and we refer to such bids as Qt-bids. We assume
that a bid is associated with a certain node i, at a certain
moment t.

Then, a segment bid (i, t, qt, q, s) is defined by the following
5 fields [11]:

1) a node i ∈ N ,
2) a time-step t ∈ T ,
3) a Qt field (or Qt-bid) qt,
4) a Q field (or Q-bid) q, and
5) a segment (or S-bid) s.
To this segment bid is associated the Q-bid (i, t, qt, q)

which is associated to the Qt-bid (i, t, qt). To make the
explanations more concrete, the reader can refer to the example
on Fig. 1. Each bid can be rejected, partially accepted or
totally accepted by an operator maximizing the welfare (or
minimizing the total activation cost) over the transmission and
distribution network. Each S-bid sb is associated with a cost
csb(xsb) = asb(Psbxsb)

2 + bsbPsbxsb + csb. Here, xsb is the
fraction of acceptance of the bid and Psb is the difference
between the maximum and minimum quantity of the bid. We
define the notation that we will require for defining the RTDP
in the next section.
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Fig. 1. Example of a bid. i = 7 stands for the node, t = 3 for the time-step,
qt = 4 for the Qt-field, q = 2 for the Q-field. There are 3 S-bids (7,3,4,2,1),
(7,3,4,2,2), (7,3,4,2,3) associated to the Q-bid (7,3,4,2). The Q-bid (7,3,4,2)
is part of the Qt-bid (7,3,4).

NOTATION

The following notation is used:
Sets
• N = (TN)∪(N∞)∪(

⋃
k∈N∞

DNk). The network consists

of |N | nodes, and each node either belongs to the trans-
mission network (TN ), is an interface node, or belongs to
the distribution network. The number of interface nodes
determines the number of distribution networks, which is
why DN = (

⋃
k∈N∞

DNk).

• N∞ represents the set of interface nodes and |N∞|
designates the number of distribution networks.

• L represents the set of lines of the transmission network
linking nodes (n,m) ∈ (TN ∪N∞)2.

• DN also denotes the set of distribution lines. Indeed, we
assume that the distribution network is radial, and we
associate each node to the line linking it to its ancestor.

• T = {1, . . . , tfinal} denotes the time horizon of the
market clearing problem, with discrete time-steps.

• SB / QB / QtB denotes the set of segment bids, Q-bids,
and Qt-bids.

• ExQB / ExQtB denotes the set of exclusive options
for Q-bids and Qt-bids. An element exqb ∈ ExQB /
exqtb ∈ ExQtB is a set of a subsets of QB / QtB in
which only one of the Q-bids / Qt-bids can be accepted.

• MDP corresponds to a set of minimum duration pairs.
This set determines pairs of Q-bids for which the first
one should be activated if the second has been activated.

Parameters
• z / z denotes the lower/upper bound of a certain variable
z (for example, power generation capacity or voltage
limits).

• Bl denotes the susceptance of transmission line l ∈ L.
• ∆Pn / ∆Qn denotes the real/reactive power demand at

node n ∈ N .
• Ri / Xi /Gi / Bi denote the resistance / reactance /

shunt conductance / shunt susceptance of distribution line
i ∈ DN .

• Sl represents the power limit of line l ∈ L ∪DN .

• Ai/Ci denotes the unique ancestor / the children of node
i ∈ DN .

• Psb corresponds to the real power quantity of segment
bid sb ∈ SB.

• QPi,t represents the limit on apparent power injection.
Variables
• pn / qn denote the balancing real / reactive power produc-

tion at node n ∈ N (naturally, qn = 0 if n ∈ TN ∪N∞).
• θn denotes the bus angle of transmission bus n ∈ TN ∪
N∞.

• fl / f
p
i / fqi denote the flow of power of transmission

line l ∈ L / real / reactive flow of power of distribution
line i ∈ DN .

• vi denotes the voltage magnitude squared at distribution
node i ∈ DN .

• li denotes the current magnitude squared of distribution
line i ∈ DN .

• xsb corresponds to the fraction of quantity activation of
segment bid sb ∈ SB.

• ssb denotes the activation of segment bid sb ∈ SB.
• qqb represents the activation of Q-bid qb ∈ QB.
• qtqtb represents the activation of Qt-bid qtb ∈ QtB.
• αqb / ωqb denote the beginning / end of activation of bid
qb ∈ QB.

• asb, bsb, csb are the parameters of the welfare function
of a segment bid sb ∈ SB.

III. THE REAL-TIME DISPATCH PROBLEM

In the following subsections, we describe the coordinated
real-time market model. This model includes the transmission
network constraints, the distribution network constraints, the
interconnection between them, the bid constraints and the
objective function. Since the only inter-temporal constraints
arise from the bids, we drop the t index on the variables and
parameters when modeling the network.

A. Detailed modeling

1) Direct current power flow transmission constraints: We
model the transmission network through the B-θ formulation
[13].

fl = Bl(θn − θm), ∀l = (n,m) ∈ L (1)

pn +
∑

l=(m,n)

fl −
∑

l=(n,m)

fl = ∆Pn, ∀n ∈ TN (2)

− Sl ≤ fl ≤ Sl, ∀l ∈ L (3)
pn ≤ pn ≤ pn, ∀n ∈ TN (4)

(1) is the B-θ representation of flows, (2) accounts for power
balance in the transmission network, and (3), (4) correspond
to line and generation limits.

2) SOCP power flow distribution constraints: For the dis-
tribution network, we use the branch flow model and relax it
through a second order cone relaxation [9].

pi +
∑
j∈Ci

(fpj − ljRj)− f
p
i +Givi = ∆Pi, ∀i ∈ DN (5)



qi +
∑
j∈Ci

(fqj − ljXj)− fqi −Bivi = ∆Qi, ∀i ∈ DN (6)

vi − vAi = 2(Rif
p
i +Xif

q
i )− li(R2

i +X2
i ),∀i ∈ DN (7)

(fpi )2 + (fqi )2 ≤ S2
i , ∀i ∈ DN (8)

(fpi − liRi)
2 + (fqi − liXi)

2 ≤ S2
i , ∀i ∈ DN (9)

(fpi )2 + (fqi )2 ≤ vili, ∀i ∈ DN (10)

p2i + q2i ≤ (QPi)
2, ∀i ∈ DN, (11)

pi ≤ pi ≤ pi, i ∈ DN (12)

qi ≤ qi ≤ qi, i ∈ DN (13)

0 ≤ vi ≤ vi ≤ vi, i ∈ DN (14)
li ≥ 0, i ∈ DN (15)

(5), (6) are the real and reactive power balance constraints. (7)
shows voltage constraints. Constraints (8), (9) limit the appar-
ent power on distribution lines. (10) is the SOC relaxation of
the non convex equality constraint linking flows, current and
voltage. (11) represents limits on apparent power injections.
(12)-(15) correspond to box constraints on the variables that
we introduce in the distribution network.

3) Flow consistency T & D interconnection constraints:
The transmission and distribution network interact through the
following interconnection constraints:

pk +
∑

l=(m,k)

fl −
∑

l=(k,m)

fl

= ∆Pk −
∑
j∈Ck

(fpj − ljRj), ∀k ∈ N∞ (16)

pk ≤ pk ≤ pk, ∀k ∈ N∞ (17)

Constraint (16) ensures that the power that is originating from
the transmission network flows into the distribution network
through an interface node. (17) imposes capacity constraints
on the power generation at the interface.

4) Bid constraints: Bids are associated with specific at-
tributes that provide a rich set of options for distributed
resources to represent complex operating constraints for their
assets. We describe each constraint after presenting it. A
detailed description of each constraint is provided in the
SmartNet project documentation [11].

pi,t =
∑

sb=(i,t,qt,q,s)

Psbxsb, ∀i ∈ N, t ∈ T (18)

xsbssb ≤ xsb ≤ ssbxsb, ∀sb ∈ SB (19)
s(i,t,qt,q,s) ≤ q(i,t,qt,q), ∀(i, t, qt, q, s) ∈ SB (20)
q(i,t,qt,q) ≤ qt(i,t,qt), ∀(i, t, qt, q) ∈ QB, (i, t, qt) ∈ QtB

(21)

qt(i,t,qt) ≤
∑

qb=(i,t,qt,q)

qqb, ∀(qt, i, t) ∈ QtB (22)

q(i,t,qt,q) − q(i,t−1,qt,q) − α(i,t,qt,q)

+ ω(i,tq,t,q) = 0, ∀(i, t, qt, q), (i, t− 1, qt, q) ∈ QB (23)
αqb + ωqb ≤ 1, ∀qb ∈ QB (24)
q(i,t,qt,q) ≥ α(i,τ,qt,q),∀((i, t, qt, q), (i, τ, qt, q)) ∈MDP

(25)

∑
qb∈exqb

qqb ≤ 1, ∀exqb ∈ ExQB (26)∑
qtb∈exqtb

qtqtb ≤ 1, ∀exqtb ∈ ExQtB (27)

RP i,t ≤ pi,t+1 − pi,t ≤ RP i,t, ∀i ∈ N, t ∈ T − {tfinal}
(28)

0 ≤ xsb ≤ 1, sb ∈ SB (29)

s ∈ {0, 1}|SB|, q ∈ {0, 1}|QB|, qt ∈ {0, 1}|QtB|,
α ∈ {0, 1}|QB|, ω ∈ {0, 1}|QB| (30)

(18) describes how bids impact the net injection of real power.
(19) defines the activation of a segment bid. (20) imposes that
a segment-bid is activated only if the associated Q-bid is also
activated. The same holds with a Q-bid and the associated Qt-
bid in (21). (22) ensures that a Qt-bid is activated if at least
one of the associated Q-bids is also activated. (23) defines that
two consecutive Q-bids of a Qt-bid are linked: the Q-bid at t
can only be activated if the one at t−1 has also been activated.
Constraint (24) imposes the fact that a bid cannot be starting
and ending at the same time. (25) is ensuring that if a bid is
activated, it remains active for a minimum amount of time.
(26), (27) indicate that certain Q-bids or Qt-bids should be
activated only if others are not (i.e. an exclusive choice has
to be made). (28) are ramp constraints on real power outputs.
(29) and (30) denote that x should be fractional as opposed
to the other bid-related variables which are binary variables.

5) The complete model: The problem that we wish to solve
is to maximize welfare:

max f(x) =
∑
sb∈SB

(
asb(Psbxsb)

2 + bsbPsbxsb + csb
)

s.t. (1)− (30)

This problem is a large-scale MISOC for networks of realistic
size, such as the ones treated in this paper.

B. The approximation considered
Since distribution systems may host thousands to millions

of resources [6], it is natural to consider linear approximations
in order to achieve scalability in the resulting dispatch opti-
mization problem. We have four conic constraints appearing
in the preceding model of the distribution network: (8)-(11).
We will consider two types of simplifications:

1) Direct current (DC) approximation in the distribution
network [13]. In this case, Ri = Xi = Gi = Bi =
0,∀i ∈ DN and we neglect reactive power, current
or voltage (the variables Qi, f

q
i , li, vi∀i ∈ DN are no

longer present in the problem). In other words, we use
the DC approximation of power flow equations in both
the TN and the DN.

2) Ben-Tal approximation. This is a linearization of the
conic constraints (8)-(11) introduced by Ben-Tal et al.
[14] in order to replace them by a set of linear con-
straints.
We can cast constraints (8)-(11) in the following format:√

x2 + y2 ≤ z



Note that z should be positive, which is the case for
(8)-(11). In Ben-Tal’s approximation, this constraint is
approximated and replaced by the following set of
constraints by introducing ξ and η variables:

ξ0 ≥ |x| (31)

η0 ≥ |y| (32)

ξj = cos(
π

2j+1
)ξj−1 + sin(

π

2j+1
)ηj−1,

j = 1, . . . , ν (33)

νj ≥ | − sin(
π

2j+1
)ξj−1 + cos(

π

2j+1
)ηj−1|,

j = 1, . . . , ν (34)
ξν ≤ z (35)

ην ≤ tan(
π

2ν+1
)ξν (36)

One conic constraint is then replaced by 2(ν + 1)
variables and 2(ν + 2) constraints. With ν = 6, the
approximation is proven to guarantee a O(2e−4) tight-
ness, meaning that the original conic constraint would be
violated at most by O(2e−4) [14]. We will keep ν = 6
for the numerical experimentation.

For the remainder of the paper, we will refer to SOCP as
the original model, DC when we use the DC approximation
on the complete network and Ben-Tal when we approximate
the conic constraints of the DN with Ben-Tal’s approximation.

IV. NUMERICAL EXPERIMENT

We perform experiments on the Italian, Danish and Spanish
network data provided by SmartNet [11]. We compare the
SOC formulation presented in this paper to the linear approx-
imations, DC and Ben-Tal. We perform experiments using
two commercial solvers, CPLEX (version 12.8) and Gurobi
(version 8.0).

A. The data

We use two different topologies of the Italian network:
693 and 652; and one of the Danish network (401) and the
Spanish network (301). 693_T00 is a toy example which
is derived from the topology of 652 whereas 652_T66,
401_T00 and 301_T00 are real country-scale instances.
Detailed information on the size of each network is presented
in TABLE I. In TABLE I, we report the number of trans-
mission nodes, the number of distribution nodes, the number
of distribution networks, the number of time-steps, the total
number of bids, and the nominal voltage range of the nodes
in the TN and in the DN.

B. Comparison of the formulations and the solvers

We test the different instances with different solvers for
the different formulations and test cases in TABLE II. Note
that it is normal to have negative objective values since we
are maximizing the welfare and that most of the bids have a
negative marginal cost in terms of welfare.
Concerning the solvers, from TABLE II we observe that
CPLEX handles the linearization of the problem better that

TABLE I
OVERVIEW OF THE ITALIAN (693_T00, 652_T66), DANISH (401_T00)
AND SPANISH (301_T00) DATA USED IN THE NUMERICAL EXPERIMENTS.

Test Case 693_T00 652_T66 401_T00 301_T00

# Tr Nodes 27 3,648 144 1,537
# Dist Nodes 175 2,410 3,046 2,799
# DNs 4 638 138 464
# Times 4 3 4 4
# S-bids 1,667 26,578 37,926 45,037
TN V range (kV) 15 - 400 2 - 400 10 - 410 1 - 400
DN V range (kV) 15 - 21 15 - 22 10.5 - 22 15 - 22

Gurobi. Gurobi, on the other hand, appears to be more
effective on the SOCP formulation of the problem. That being
said, by using the appropriate solver, we can solve the problem
in the order of magnitude of one second for 693_T00 and
dozens of seconds for 652_T66 and hundreds of seconds for
401_T66 and 301_T66 (even less for the DC). Concerning
the quality of the resulting solution, we observe that the
DC approximation may be far from optimal and tends to
underestimate or overestimate the number of bids that should
be accepted. The Ben-Tal formulation provides almost as good
solutions as SOCP, but still might deviate with respect to the
number of bids that should be accepted. Since Ben-Tal is an
approximation of SOCP and seems to be harder to handle for
the solver, we do not consider it further for solving the problem
at hand. We also observe that solving SOCP is not too time
consuming. Given these experimental observations, we will
only consider SOCP and solve the problem with Gurobi as a
solver.

C. Results

The results of our numerical experiments on the test cases
with the SOCP formulation are presented in TABLE III. In
discussing these results, it is important to keep in mind that
dispatchers in real-time operations require updated decisions
every 15 minutes. Interestingly, for the three real instances,
we manage to obtain a solution in in the time frame of an
imbalance interval. Nevertheless, the solution that we obtain
is not feasible, in the sense of satisfying the non-linear non-
convex power flow equations. Recall that the SOC relaxation
arises from constraint (10), where we should have an equality
if we want to obtain a physically implementable solution.
Even if we cannot measure the distance to a physically
implementable solution, we report the SOCP gap in TABLE III
(second to last line). The SOCP gap remains reasonably small
for the two first cases and the last one. On the contrary, the
large SOCP gap for 401_T00 might suggest that the obtained
dispatch is far from being feasible. That being said, in view
of the short solve time of the MISOC that we are solving in
this paper, we can envision using the solution of this model
as a warm start for a nonlinear solver or any other method
that could provide a physically implementable solution (i.e. a
solution satisfying (1)-(30) with (10) being an equality). This
extension will be explored in future research.



TABLE II
PERFORMANCE OF THE DIFFERENT SOLVERS AND FORMULATIONS ON THE 4 INSTANCES CONSIDERED. IN THE SECOND COLUMN, THE LINES REPRESENT

THE SOLVE TIME, THE OBJECTIVE VALUE, THE PERCENTAGE OF REAL POWER LOST IN THE NETWORK AND THE NUMBER OF ACCEPTED BIDS.

DC Ben-Tal SOCP
Test Case Gurobi CPLEX Gurobi CPLEX Gurobi CPLEX
693_T00 Time (s) 0.58 0.61 7.4 16 1.5 5.5

Obj (e) −7.8e3 −7.8e3 −7.5e3 −7.5e3 −7.5e3 −7.5e3
Losses 0% 0% 1.64% 1.64% 1.64% 1.64%
# S-bids 100 99 110 115 113 113

652_T66 Time (s) 105 24.7 3.54e3 320 68.5 3.6e3*
Obj (e) −7.8e3 −7.8e3 −7.5e3 −7.5e3 −7.5e3 −7.5e3
Losses 0% 0% 0.37% 0.37% 0.37% 0.37%
# S-bids 10,935 10,935 10,935 10,935 10,935 10,935

401_T00 Time (s) 75.1 48.1 3.6e3* 1.05e3 421 3.6e3

Obj (e) −4.176e4 −4.175e4 −4.258e4 −4.259e4 −4.258e4 -
Losses 0% 0% 1.58% 1.56% 1.57% -
# S-bids 3,328 3,348 3,148 3,157 3,132 -

301_T00 Time (s) 142 44.9 3.6e3* 916 377 3.6e3*
Obj (e) 2.925e3 −2.925e3 - −2.958e3 −2.925e3 -
Losses 0% 0% - 0.53% 0.53% -
# S-bids 374 457 - 510 345 -

The star index shows that the run time exceeded 1h. In addition, if no feasible solution is returned, the other fields of the table are not filled.

TABLE III
RESULTS ON THE TEST CASES THAT WE ANALYZE.

Test Case 693_T00 652_T66 401_T00 301_T00
# Var 2.16e4 4.53e5 4.35e5 4.90e5

# Bin 4.22e3 6.49e4 1.49e5 1.57e56
# Constr 3.08e4 5.60e5 6.21e5 6.65e5

# SOC 2.21e3 3.06e4 3.49e4 3.22e4

Objective (e) −7, 51e3 8.33e3 −4.26e4 −2.96e3
Gap 0.89 0.66 3.93e3 4.5e−5

Time (s) 1.52 68.5 421 377

V. CONCLUSION

Throughout this paper, we provide a detailed description of
how transmission and distribution operations can be optimized
simultaneously in real time. The model leads to an MISOC of
large scale if we are to consider real-world instances of the
problem. We consider approximations of the problem using a
DC approximation and the Ben-Tal formulation. We observe
that the MISOC tackled with the appropriate solver provides
the best trade-off between quality of the solution and execution
time. Preliminary results show that this type of problem can
be solved efficiently and fit the time limit requirement of the
real-time market for the Italian, Danish and Spanish test cases
considered in this paper.
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