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Abstract—The Dynamic Economic Dispatch (DED) problem
consists in satisfying a certain demand for electric power among
scheduled generating units over a certain interval of time while
satisfying the operating constraints of these units. The consider-
ation of the valve-point effect (VPE) makes the problem more
practical but also more challenging due to the non-linear and non-
smooth constraints that are required for representing the model.
We present a method, based on a sequence of piecewise linear
approximations, which produces a feasible solution along with a
lower bound on the global solution. In this way, this deterministic
approach can trade off the speed which characterizes certain
heuristics that are usually used to solve the DED-VPE for a
better solution and insights about the problem. The method is
applied to a widely used case study and provides a lower solution
objective than the best known solution to date.

I. INTRODUCTION

The Economic Dispatch (ED) problem is an important
optimization problem in short-term power system planning.
It consists in the optimal dispatch of power among scheduled
electricity generation facilities in order to meet the system
load at a minimal cost. Commonly, the fuel cost functions
have been modeled as a smooth quadratic function in the
ED problem. Unfortunately, such a model does not reflect the
valve-point effect (VPE), i.e., the fact that turbines operating
off a valve point run less efficiently due to throttling losses.
This significantly affects the output of facilities that are now
characterized by a non-smooth and non-convex cost function.
The latter characteristics of the cost function prevent us from
using traditional derivative-based optimization techniques for
solving the problem.

In the past decades, a plethora of methods have been
developed in order to address this problem, including neural
networks [1], simulated annealing (SA) [2], genetic algorithms
(GA) [3], evolutionary progamming [4], differential evolution
(DE) [5] and particle swarm optimization (PSO) [6]. A more
exhaustive list of these methods and other hybrid combinations
can be found in [7]. Most of the aforementioned techniques are
heuristics and, if they often give a fast and reasonable solution,
they lack guarantees with respect to the returned solution.
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On the other side, deterministic mathematical programming-
based optimization techniques have the advantage of providing
information about the distance of the solution from optimality.
Such methods have been developed by piecewise linearization
of the VPE-term [8] and of the entire objective function [9],
leading to respectively a mixed integer quadratic programming
(MIQP) and a mixed integer linear programming (MILP)
problem. More recently in [10], an adaptive MIQP method
has been proposed with the significant feature of providing
a global solution of the static ED. This method relies on a
sequence of under-approximations for which the sequence of
optimal solutions eventually converges to the global solution
of the original problem. Early developments of the adaptive
approach can be found in the technical report [11].

Here, we follow this adaptive approach. Our contributions
are to (i) apply this approach on the dynamic ED and (ii) to
investigate the benefit of using a MILP formulation.

The remainder of this paper is organized as follows. In
Section II, the full problem is introduced and the VPE is de-
scribed. The linear version of the adaptive method is presented
in Section III. Then the application on a 10-generator case
study over 24 hours is performed in Section IV and the cost
of neglecting the VPE is computed. Finally, conclusions are
drawn in Section V.

II. PROBLEM STATEMENT

This section outlines the problem of interest, namely the
dynamic economic dispatch (DED) problem. This problem
consists in minimizing the fuel costs of the thermal power
units throughout a certain time period subject to operational
constraints. The objective is defined as the sum of the in-
dividual cost functions over each time step and is therefore

separable,
n7
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where f is the total cost function ($/h), fi; the fuel cost
associated with generator ¢ at time ¢ and p is the stacked
production vector of each individual generator production p;;



(MW). A common model of the fuel cost functions including
the VPE is the sum of a smooth quadratic part and a non-
smooth rectified sine, i.e.,

fit(Dit) = aip} + bipit + ¢; + d; [sine;(pe — p™™)| . ()

with appropriate parameters a;, b;, ¢;, d;, e;. The impact of the
VPE, namely the non-smooth and high multimodal nature of
the problem, is underlined in Figure 2. The model must of
course enforce power balance which couples the optimization
problem,

> pi=PP +p"(pr), 3)

=1

with PP and p”(p;) respectively the load demand at time ¢
and the transmission lost in MW. The latter is not included in
the method presented here and the assumption p’(p;) = 0 is
made throughout the rest of this paper. This extension is left
for future research.

We consider spinning upward reserve, i.e., extra generating
capacity in case of contingencies,

D s> S, ©)
i=1
sit < RY ®)

with s;; the extra capacity that generator ¢ must be able to
provide and S, the total spinning upward reserve required at
time t.

Finally, the optimization problem is subject to operational
constraints such as the admissible range of power production,

P < pyy (6)
Dit + i < P @)

and ramp constraints,
—RP < pi — Dit—1) < RY (3

with P and P/** the minimum and maximum acceptable
range of power production and RP, RV the downward and
upward ramp rate limit of the ¢-th generator.

Note that, with the exception of power loss, the method
described in the following section can be easily extended to
more complicated models that account for downward spinning
reserve, multiple fuels and prohibited operating zones.

III. METHOD DESCRIPTION

This section is devoted to the characterization of an algo-
rithm for the solution of the DED. The method consists of
a sequence of piecewise linear approximations, the surrogate
problems, tackled by a MILP solver and is described in
Figure 1. Let us now define the surrogate problem.

A. Surrogate problem

For all 7 and ¢, let X;; be a set of points X;;; < X0 <
< X,L-t,nllg?m, called knots, from which we construct a
piecewise linear approximation g;; of f;. We create the
original set of knots of unit ¢ equally for each time ¢ as the
union of two subsets. The first subset is the set of kink points,
which are the points where the cost function is non-smooth.
The second subset is the set of local maxima of the rectified
sine. Hence for every unit ¢ and time ¢, the set of initial knots
is equal to

(=D
2€i

with nkiet = 1 4 [(Pmex — pmin)2¢i] We then construct the
surrogate approximation g;; through a binary formulation, i.e.,

X, = P 4 j=1...nknet 9)
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where a;¢; and J;¢; are the slope and vertical intercept of the
linear pieces; see [10] for details of the concept. The binary
variables 7 act as switches which select the different pieces.
Following (1), we also define g(p) := 27:{ +—1 9it(pit). The
surrogate optimization problem becomes 7

n, T nfet—1
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B. Knot Update Mechanism and Algorithm Statement

Assume a solution of the surrogate problem has been
obtained. If the gap between the true and surrogate objective
function evaluated at this point is too large, an increase in
the number of knots should be contemplated. Indeed, the
approximation will be enhanced and the same is true for the



e |

v
Initiate set of knots (2-5)

12

Solve surrogate problem (9)

¥

Is
tolerance
reached
?7(®)

Refine (12-16)

yes

C e

Fig. 1. Flow chart of the adaptive piecewise-linear approximation (lines
reference to Algorithm 1).

surrogate solution. In [9], the adopted approach was to increase
the knot sampling over the entire allowable range. However,
this increases the number of knots and therefore the number
of binary variables exponentially. In this work, we follow the
knot update mechanism from [10], i.e., the previous surrogate
solution is added to the knot list. As a consequence, in the
new iteration, the surrogate solution differs from the old one
and convergence is guaranteed. The proposed APLA algorithm
(Algorithm 1) is very similar to Algorithm 1 in [10].

Algorithm 1 APLA: Adaptive piecewise-linear approximation

1: Set tolerance parameter Oy

2: fori:=1...n do

3 fort:=1...7T do

4: Choose set of knots (X;;) including kink points

5: Git < fir(Xit)

6 end for

7: end for

8: while 6% > 5, do

9 p¥ <« optimal solution of MILP surrogate prob-
lem (11), obtained with MILP solver with tolerance v

10: 0% f(p*) — g*(p¥)

;0 « ming—y, f(PY) — g*(p¥)

12: fori:=1...n,t:=1...T do

13: if minje{lmngm} ’pf’t — Xitj’ > 0 then

14: X + insort(X;;, pF,) > ordered insertion

15: Gt < insert(G, fir(pY)) © insert at same
index as previous line

16: nknot ¢ pknot 4 1

17: end if

18: end for

19: end while

20: return argmin,_; , f(p')

C. Bound to optimal solution

At step k of Algorithm 1, the objective function evaluated
at the optimal solution p* can be bounded as follows,

min f(p') = 8" =" —¢* < f(p) < min f(p), (12)

where 6% is the gap between the best known objective and
the surrogate function at point pX as computed in line 11
of Algorithm 1, 7" is the tolerance set to the solver and
€* represents the over-approximation error. Let us explain
more precisely each of these bounds and how it evolves as
k increases.

a) The over-approximation error (€*) : Algorithm 1 is
based on a sequence of piecewise linear approximations. In
contrast with the APQUA method of [10], the approximation
is not guaranteed to be an under-approximation. It can be seen
that the approximation will be an under-approximation if the
true cost function is concave in each segment delimited by
the initial knots. However, this concavity assumption is not
satisfied in our case because the curvature of the rectified
sine vanishes at the kink points (see bottom right magnifi-
cation in Figure 2). More precisely, function f;; is convex on
2% ) x [=1,1]. In the example studied in
Section IV, these convex parts are very small: about 0.5% of
the whole domain. The error €* can be computed as

Xt + L arcsin
e

e = max(¢"(p) - £ (p)), (13)
n, T
-  max (9" (pie) — f(pir)) - (14)
im1, 11 PE P PP

=l
Note that this last equation can be easily calculated at every
iteration since it can be viewed as n x T' x n¥"! decoupled
optimization problems of a single variable. Besides, as we
never remove points, (¢“)ren can be bounded above; we
obtain for all k=1, 2, ...

ek < e .— qup max(g(p) — f(p)), (15)

geg P
where G is the set of all piecewise interpolations of f such
that the kink points belong to the set of knots that defines the
interpolation. In other words, G is the set of functions to which
Algorithm 1 has access in order to approximate f. For the case
study investigated in Section IV, we get €™** = (.32 $ which
is very small with respect to the other bounds.

b) The gap between the best objective and the surrogate
function ( 5k ) : Following [10], we show in Theorem 1 that
(6%)ren, the gap between the objective and surrogate function
at point p¥, converges to 0. Then, we use this result to prove
that the limit superior of (6*),en goes to zero as well.

Theorem 1. limj,_,., 6¥ =0

Proof. We first show that f and ¢*, k =0, 1, ...
continuous on the feasible set.

For each unit ¢ and time ¢, we have | f;;(p + A) — fir(p)] <
(2a; P 4+ b; + d;e;)A = K; A with K; the so-called Lips-
chitz constant. Summing up on each unit, K :=T'x Y . | K;
is a valid Lipschitz constant for f. Since gft is a continuous
piecewise interpolation of f;, it is also Lipschitz continuous
and K; (resp. K) is a valid Lipschitz constant for g% (resp.

are Lipschitz



Fig. 2. Outline of the true f and surrogate g functions. The bottom left
magnification allows a better vizualization while the bottom right one shows
a tiny convex zone around a kink point.

g"). Let (p*)ren be the sequence of optimal solutions of the
surrogate problem associated with function g”, we then obtain

& = f(p*) - g"(®"),
= ") —g" "+ " - " ("),
=" - e+ - 4" "),
<2K ||p" - 7],

where the 3rd line comes from the knot updating criterion and
the last line from the Lipschitz continuity.

Suppose for contradiction that (6¥),cn does not converge to
0. Then there is 6* > 0 and an infinite subsequence (6*/);en
such that |§%i| > 6* for all j. Then, given any j, we have that
for all J > j, ||[p™ — p™i|| > 0*/(2K). This implies that
the subsequence (p™7),cn is unbounded, a contradiction with
the admissible range constraints. O

The bottom left magnification in Figure 2 depicts an ex-
ample of 5% note that the 7 and ¢ jndices have been omitted.
Finally, due to the definition of ok, it immediately follows
from Theorem 1 that

lim sup ok <0.

k—o0

(16)

c) The solver tolerance (v*) : The sequence (yk)k eN
is not monotonic and is bounded below by ~f(p*) with v
the solver relative tolerance gap to the global solution of the
surrogate problem.

D. Extension to broader class of functions

The method, as written in Algorithm 1, works for piece-
wise smooth-concave functions f;;. Nevertheless, it can be
extended to convex functions. In a similar fashion as the outer
approximation (OA) algorithm [12], the under approximation
of the convex part is tackled by adding constraints instead of

Fig. 3. APLA extension to non-concave function.

variables. Let us apply this procedure on a simple example,
in order to illustrate the approach: we consider the problem

A7)

min sin(x) .
z€[0,27] ( )
Starting from the three knots (X1, X2, X3) = (0,7, 27), the
surrogate problem is written as follows

minEm,t g?(gh 771) +1 )

S.t. X()’I71 S gl S X17]1 s
Xim2 < & < Xoma,
u)(Ea,m2) <t
Ug(§27772) <t,

m+mn=0, m2ec{0,1},

where gf(f, 1) = a&+ Bn and («, B) defines the line gf from
Figure 3. The same idea applies for u§

Let us analyse the procedure of refining around a point both
in the concave (z1) and in the convex region (x2). For the first
case, we simply add x; to the set of knots, splitting g7 into
g1 and g3. And, for the second case, we request t to be also
above the tangent in x5, i.e. t > ul(&a,72). Doing so we can,
with very few changes to Algorithm 1, adapt the method to
deal with any piecewise-smooth function.

IV. TEST CASE STUDY

In this section, a 10-unit DED without losses over T' =
24 hours is studied and the obtained solution is compared
with the solution that is obtained by ignoring the VPE. The
data set used for the case study can be found in [13] and the
spinning reserve is set at 5 % of the demand. The optimization
is performed on a computer with an Intel-i7 CPU and 16 GB of
RAM. Gurobi 8.0.0 has been used with a relative gap tolerance
of v = 0.25% and the model has been coded in AMPL. Note
that a feasible solution stays feasible for the surrogate problem
at every iteration. Hence, in order to benefit from the previous
iterations, the MILP solver is fed with the best known solution
of the true problem as an initial incumbent. Algorithm 1 is also
slightly improved by asking, in line 9, the solver to return the
50 best incumbent solutions instead of the sole best one. Then,
the best candidate solution becomes the minimum with respect
to the true objective value of this set of incumbent solutions,
provided that it is smaller than the actual best candidate.

After 9 iterations and 902 seconds, a solution with 5 =1.42
$ is found with objective 1016276 $. This is an improvement
over the previous best solution in the literature with objective



1016311 $ [7]. Neglecting €™#*, the final relative optimality

&P 1/ (p*) — £(p)| 5
p*) —f(p)| _
o e TR

Following standard practice of the VPE literature [6], [7], [10],
we include the power dispatch among the generating units in
Table I in order to validate our results.

The practical economy of the consideration of the VPE
can now be computed. If the parameters d and e from Eq. 2
are set to O, i.e. if the VPE is ignored, we face a convex
quadratic programming (QP) problem. When the solution of
the QP problem is inserted into the real objective function, we
obtain an objective of 1036211%. Hence, the additional work
for taking into account the VPE decreases the cost by 1.96%.

(18)

V. CONCLUSION

In this paper, we have presented a deterministic method
which accounts for valve-point effect in the dynamic economic
dispatch problem. The method relies on a succession of
piecewise linear approximations of the cost function which
define a surrogate problem. The method is adaptive in the
sense that the previously computed best candidate minimum of
the surrogate problem is added to the knots used to define the
approximation. Doing so, the method converges to a solution
which is optimal within the mixed-integer solver accuracy, plus
an e term that can be bounded a priori and turns out to be tiny
in problem instances found in the literature.

The result of our case study confirms this distinctive feature
by slightly improving the best known solution to the consid-
ered problem. However, as each surrogate problem remains
challenging, the computation time of our approach is higher
— approximately 10 times — than the method giving the
previously best results. The proposed method benefits from an
another advantage: it is not limited to the dynamic economic
dispatch problem, as any optimization problem with separable
objective can be treated in a similar way.

Future work may involve an acceleration of the method, for
instance by using the previous solutions in order to restrict
the dispatch range of the units to a neighborhood of the
optimal solution and thereby reduce the number of variables
that are used in the formulation. Moreover, the method can be
extended to a unit commitment formulation of the problem,
which expands its scope to day-ahead scheduling applications
where we are also afforded a larger run time.
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TABLE I
OBJECTIVE VALUE: 1016276 $.

Hour Ul (MW) U2 U3 U4 us 18[9 u7 U8 U9

1 150 143.56 185.533 60 122.867 122.45 129.59 47 20

2 150 223.56  229.399 60 73 122.45 129.59 47 20

3 150 303.56  297.399 60 73 122.45 129.59 47 20

4 226.624 316.799 305.67 60 122.867 122.45 129.59 47 20

5 226.624 396.799 299.67 60 122.867 122.45 129.59 47 20

6 303.248 396.799 321.179 60 172.733 122.45 129.59 47 20

7 303.248 396.799 297.399 107913 222.6 12245 129.59 47 20

8 379.873 396.799 297.399 149.87 172.733 12245 129.59 52.285 20

9 456.497 396.799 297.399 191.246 172.733 12245 129.59 82.285 20

10 456.497 396.799 303.399 241.246 222.6 160 129.59 85.312 21.556

11 456.497 396.799 297.399 291.246 222.6 160 129.59 85.312 51.556

12 456.497 460 307.698 291.246 222.6 160 129.59 85.312 52.057

13 456.497 396.799 302.899 241.246 222.6 160 129.59 85.312 22.057

14 456.497 396.799 294.373 191.246 172.733 12245 129.59 85.312 20

15 379.873 396.799 303.397 168.624 122.867 122.85 129.59 77 20

16 303.248 393.821 291.266 118.624 73 122.45 129.59 47 20

17 303.248 313.821 297.399 68.624 122.867 122.45 129.59 47 20

18 379.873 393.821 297.399 60 122.867 122.45 129.59 47 20

19 456.497 396.799 297.399 70.219 172.733 122.45 129.59 55.312 20

20 456.497 460 332.782 120.219 222.6 160 129.59 85.312 50

21 456.497 389.533 297.399 110 222.6  158.069 129.59 85312 20

22 379.873 309.533 297.399 60 172.733 122.45 129.59 81.422 20

23 303.248 229.533 237.89 60 122.867 122.45 129.59 51.422 20

24 226.624 222.266 178.22 60 122.867 122.45 129.59 47 20




