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Abstract—Continuous intraday electricity market has become
increasingly important in recent years, due to the increasing
integration of renewable resources in power systems. Trading
in this market is challenging due to the multistage nature of the
problem, its high uncertainty, and the fact that decisions need to
be made rapidly in order to lock in profitable trades.

We cast the problem of trading in continuous intraday markets
as a reinforcement learning problem, and tackle the problem
using policy function approximation. We specifically parametrize
the trading policy using price thresholds, and optimize the
choice of these thresholds using the REINFORCE algorithm. We
demonstrate the effectiveness of our proposed policy by showing
that it outperforms the method, classically used in the industry,
rolling intrinsic of 4.2% (out of sample) on the 165 last days of
2015 in the German continuous intraday market.

I. INTRODUCTION

The integration of renewable sources in Germany has re-
cently increased from 18.2% in 2010 to 32.2% in 2016 [1].
This proliferation is largely driven by the 2020 climate and
energy package [2] which has been adopted by the European
Union in 2008, and which targets sourcing 20% of the EU
energy consumption from renewable sources by 2020. This
increase of renewable production implies that the market
requires more flexibility close to real time. Consequently,
the Germany continuous intraday market (CIM) which allows
agents to correct their trading positions in the actual day of
operations where renewable supply conditions are revealed has
become increasingly active. Specifically, traded volumes in the
German CIM have increased from 1005 TWh in 2010 to 4070
in 2016 [3]. This market is therefore becoming an interesting
option for fast-moving assets such as pumped hydro storage
to valorize their flexibility.

CIM follows a format which is distinct from that of balanc-
ing markets and day-ahead auctions, and have therefore been
analyzed separately in the literature. The literature can be clas-
sified into the three following categories. (i) The first category
of papers focuses on modeling the statistical properties of the
CIM [6] and [7]. (ii) The second category optimizes trading
strategies by placing strong assumptions on the behavior of
the CIM price through parametric models [8] and [9]. (iii)
The third approach focuses on developing methods without
invoking prior assumptions on either the model or the data
which is also the approach that we follow. In [10] the authors
propose a heuristic method for covering the position of a wind
farm. In [11], the problem of a storage unit is modelled as
a partially observable Markov Decision Process and solved
”in sample” using value function approximation. In [12], the

problem of a trader not owning any asset and covering its
position in the balancing market is presented. The authors
model the problem as a one step reinforcement learning
problem and use policy function approximation coupled to the
REINFORCE algorithm in order to solve it.

The contribution of this paper is threefold: (i) We cast the
problem of bidding in the CIM as a reinforcement learning
problem. (ii) We employ policy function approximation in
order to solve the reinforcement learning problem. The ran-
domized policy that we propose is characterized by parameters
which describe the price thresholds above which buy orders1

should be accepted, and below which sell orders should be
accepted. The form of our policy will be justified by the
insight that we gain from analyzing the KKT conditions of the
problem in deterministic form. In order to optimize the policy
parameters, we use the REINFORCE algorithm, as described
in [13] and [14]. (iii) We propose some behaviors that should
be included in the policy in order to make it successful. We
will present the general idea of these behaviors and explain
with complete details how to parametrize the policy for one
of them.

II. OVERVIEW OF THE GERMAN ELECTRICITY MARKET

The positioning of the CIM in the German electricity market
design is presented in figure 1. Short-term market operations
commence with the clearing of the day-ahead market on the
day before actual operations (D-1), at 12 noon [15]. The
intraday auction (IA) is then conducted at 3 pm [16] on D-
1. The CIM opens at 3 pm on D-1 for hourly products, and
at 4 pm on D-1 for quarterly products. The market closes 30
minutes before delivery [3]. Following delivery, the imbalances
of market participants are settled at the imbalance settlement
phase.

In this paper we will focus exclusively on developing
methods for the CIM. We further restrict our attention to
methods that do not result in imbalance, in order to focus
on the intertemporal arbitrage opportunities that are offered
by pumped hydro assets, and avoid instead risky policies
that make profit by speculating on the imbalance price. In
the German CIM, buy and sell bids arrive randomly and are
‘grabbed’ by market participants who find the bids favourable.
The specific question that we focus on in this paper is which
bids should be selected by owners of pumped hydro storage
assets. The bids are characterized by the delivery period (hour

1Buy/sell order means that somebody wants to buy/sell power from us.



or quarter within an hour), their type (buy or sell), the selling
or buying price (in e/MWh) and quantity (in MWh).

Fig. 1: The sequence of operations in German short-term
electricity markets

III. THE CIM TRADING PROBLEM AS A REINFORCEMENT
LEARNING PROBLEM

We proceed by casting the CIM trading problem as a
reinforcement learning problem. To this aim, we define the
states variables, the action variables, the transition function and
the objective function. We make the following assumptions
and simplifications: (i) As the information about the type of
the bids (continuous, integer, block) is not disclosed in the
German market data set, we consider only continuous bids.
This implies that we can accept fractions of bids. (ii) For
the sake of simplicity, we only consider hourly products. The
extension to quarterly products is straightforward.

A. State variables

Our state can be decomposed into three subsets:

St = (S1
t,d, S

2
t,d, S

3
t,d), ∀d ∈ Dt

where Dt is the set of delivery hour which can be traded at
time step t. These 3 subsets are defined as: (i) The offers
available in the CIM at the moment we take the decision
S1
t,d. (ii) The data to characterize what we have contracted

in the past S2
t,d. (iii) Exogenous data that we think should

influence our decision S3
t,d. In this section, we will define the

first two sets. We will characterize more precisely the last one
in section V where we talk about the behaviors we expect
from the policy.

1) Offers available in the CIM: We cannot put all the
available offers in the state because it would require to take
a decision on all of them which would give an intractable
action space. Indeed, in a typical order book, there may exist
more than 1000 bids available which would imply more than
21000 possible actions. In order to overcome this problem,
we discretize the quantity which can be contracted with
2n + 1 options −qntd,−q

n−1
t,d , · · · , q1t,d, 0, q1t,d, · · · , q

n−1
t,d , qnt,d.

we also define the 2n cutoff between the different possibilities
−Cn,−Cn−1, · · · ,−C1, C1, · · · , Cn−1, Cn. The cutoffs are
defined as Ci =

qi+qi−1

2 , i ∈ 1 · · ·n.
Finally, S1

t,d = (m1
t,d,m

2
t,d) where

• m1
t,d = (pt,d(−Cn), · · · , pt,d(Cn))

with pt,d(Ci), the value of the demand function evaluated
at Ci MWh for delivery hour d at time step t;

• m2
t,d = (revt,d(−qn), · · · , 0, · · · , revt,d(qn))

with revt,d(qn), the revenue of selling qn MWh for
delivery hour d at time step t;

2) Contracted quantity: This set includes the necessary
information in order to represent the producer position at time
step t. It contains (vt,d), ∀d ∈ Dt, where vt,d represents the
quantity that would be stored at delivery time d with the trades
accepted at time step t or before if the producer does not trade
anymore in the future.

B. Action variables

Our action space At contains (at,d), ∀d ∈ Dt, where at,d
represents the quantity we sell at time step t. This variable
can take values:

at,d ∈ {−qn, · · · ,−q1, 0, q1, · · · qn}, ∀d ∈ Dt

C. Transition function

As we use reinforcement learning, we do not have to model
the transition function completely. In our case, it would be
really difficult to have a coherent model for the evolution of
S1
t,d because it would require jointly modelling the bid arrival

process for the different delivery time. On the other side, it
is easy to model S2

t,d because its evolution is not stochastic.
This model is given by equation 1. The interpretation is that
the volume for one delivery time is equal to the volume for
the same delivery time at the previous time step at which we
subtract the quantity sold at the current time step for every
products having an earlier delivery time.

vt,d = vt−1,d −
∑

b∈Dt|b≤d

at,b, ∀d ∈ Dt (1)

Previously, we mention that we want to avoid being in
imbalance. To this aim, we impose constraints 2 in order to
ensure that the reservoir capacity is feasible for each delivery
time.

0 ≤ vt,d ≤ V, ∀d ∈ Dt (2)

D. Objective

The objective is defined as the sum of the revenue we get
for every delivery time of the CIM.

Rt =
∑
d∈Dt

revt,d(at,d)

IV. APPLICATION OF POLICY FUNCTION APPROXIMATION

There are two main categories of methods which are used
in order to solve model free reinforcement learning. The first
one is value function approximation. This method is used on a
similar problem in [11]. The limitation is given by the number
of data which are needed in order to learn the huge number
of parameters of a deep neural network. In this paper, we
use policy function approximation as described in [13] and
[14]. The idea of this method is to parametrize the policy
with respect to a parameter vector θ and to optimize this θ.



More precisely, we optimize our policy π(a|s; θ) with respect
to θ where

πθ(a|s) = P[At = a|St = s; θ]

The advantage of policy function approximation is that the
user can include all his knowledge about the problem directly
in the policy parametrization [14]. It also gives policies that are
easier to interpret, compared to value function approximation
coupled with deep neural network, because it uses far less
parameters.

We focus on a policy which is parametrized by buy and sell
price thresholds. The threshold policy that we investigate in
this paper accepts sell bids if their price is below the buy
threshold, and accepts buy bids if their price is above the
sell threshold. Our focus on threshold policies is justified by
the fact that optimal intertemporal arbitrage in a deterministic
setting is indeed achieved by a threshold policy, provided
that the bounds of the reservoir are not binding2. In the next
section, we will present the REINFORCE algorithm which
is used in order to optimize θ. Then, we will show how to
compute a closed form solution of the quantity needed in this
REINFORCE algorithm.

A. REINFORCE algorithm

We employ the REINFORCE algorithm, as defined in [13]
and [14], in order to determine the optimal thresholds for our
policy. Denote by θ the parameter vector which characterizes
a policy function. Then there exists a mapping (typically non-
convex) from the parameter θ to the average payoff of the
resulting policy. The goal of the algorithm is to optimize this
vector θ on the basis of episodes, or epochs, of learning. An
episode in the context of our problem is one day of CIM
trading on the basis of training data. We consider 24 time steps
separated by one hour each with the first one 30 minutes before
the delivery of the first product (hour 1). It means that at the
first time step, we can trade the 24 products. On the contrary,
at the second time step, there is not any available trade for
the first delivery time as the market for that delivery time is
closed and therefore we can trade the 23 last products. Finally,
at the last time step, we can only trade the last product. For
every time step, we update θ according to algorithm 3 where
gt is the profit from t to the end of the episode T .
• Initialize θ
• for each episode {s1, a1, r2, · · · , sT−1, aT−1, rT } ∼
π(s, a; θ)

for t = 1 : T-1 do

θ = θ + α∇θlog(π(s, a; θ))gt (3)

end for
end for

It has been proven in [13] and [14] that this algorithm update
is following the gradient of the expected profit which gives us
the guarantee to converge to a local optimum under standard
stochastic approximation conditions for decreasing α.

2We demonstrate this in an online appendix which is available at:
https://sites.google.com/site/gillesbertrandresearch/publications/app-gm2019

B. Derivation of the policy and its gradient

The REINFORCE algorithm requires a policy which is
differentiable with respect to the parameter vector over which
the policy is parametrized. Therefore, we employ a stochas-
tic threshold rather than a deterministic one. This idea has
been applied on a simpler problem in [12] for a one step
reinforcement learning problem and a single delivery time.
More precisely, we define our policy parameter vector, θ, as
θ = (µX , exp(σX), µY , exp(σY )), where µX and µY are the
means of the normal distributions and exp(σX) and exp(σY ))
are the standard deviations that we use for sampling the
thresholds X and max(X,Y ). The fact that we select X and
max(X,Y ) and not X and Y as thresholds is justified by
the the fact that bids that are available in an order book are
not matched. Therefore there must exist a bid-ask spread. It
is therefore not profitable to simultaneously accept buy and
sell bids that correspond to the same delivery time, since this
leads to a certain financial loss.

Our policy is demonstrated in figure 2 for n = 2, q1 = 10
MWh and q2 = 20 MWh. C1 and C2 are therefore respectively
equal to 5 and 15MWh. As indicated in the figure, the
probability of accepting 0 MWh of buy bids (denoted as
π(s, 0; θ)) is equal to the upper purple surface. The probability
of accepting 10 MWh is the surface indicated in red. Finally,
the probability of accepting 20 MWh is the surface indicated
in the lower purple area.
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Fig. 2: Threshold for hydro problem. The bell curve indicates
the probability density function of the sell threshold. The
two purple segments and the red segment of the bell curve
indicate the probability of each of the three actions. The
green decreasing function corresponds to the buy bids that
are available in the order book for a given trading hour.

In order to implement the REINFORCE algorithm, we need
to express the probability of each action as a function of the
parameters that characterize our policy. These probabilities can
be expressed in closed form. We show an example of this
closed form in equations 4 and 5.

https://sites.google.com/site/gillesbertrandresearch/publications/app-gm2019


π(s,−qn; θ) = Pr(p(−Cn) ≤ X)

= 1− FX(p(−Cn)) (4)
π(s, qn; θ) = Pr(max(X,Y ) ≤ p(Cn))

= FX(p(Cn))FY (p(Cn)) (5)

The REINFORCE algorithm also requires the derivatives
of these probabilities with respect to the parameters that
characterize the policy. One of these derivatives is given in
equations 6. The others can be computed similarly.

∂π(s,−qn; θ)
∂µX

=
∂(1− FX(p(−Cn)))

∂µX
= fX(p(−Cn)) (6)

V. POLICY DEFINITION

One of the interests of policy function approximation is
to include the user’s knowledge in the parametrization of the
policy. In this section, we will first show that the threshold can
be expressed as any differentiable function of the state. Then,
we will present the behaviors that we have added in our policy.
After that, we will describe precisely how we parametrize the
policy in order to include one of this behaviour.

A. Policy parametrization

Let f Rn → R4 be a differentiable function s.t. θ = f(α).
We can compute the derivative with respect to α by using the
chain rule.

∂π(s; θ)

∂α
=
∂π(s; θ)

∂θ

∂θ

∂α

=
∂π(s; θ)

∂θ

∂f

∂α

Now, we can describe more precisely the subset S3
t,d, it

contains the exogenous factors which appears in the policy
parametrization: f(α).

B. Expected behavior of the policy

The different behaviors we expect from our policy are: (i)
Ensure that the energy stored stays in the reservoir limits.
(ii) Adapt with respect to the particularity of the trading day.
(iii) Adjust with respect to the delivery time. (iv) Adapt with
respect to the information received during the day. (v) Adjust
with respect to the remaining time before the market closure.

C. Threshold adaptation with the trading day particularity

In this section, we explain how we manage to have a
threshold which adapts to the trading day. This is necessary
because it is not possible to obtain good results without
adapting to the particularity of each day as illustrated on the
left graph of figure 3. From this graph, it is clear that it
is not possible to set a single threshold which would give
good results for the two days because their average level is
completely different. In order to account for the difference
between the different days, our idea is to include the IA price
in the policy parametrization. In order to illustrate that the

IA price convey a lot of information about the CIM price3,
we show on the right graph of figure 3 an histogram of
the difference between the CIM and the IA price. It can be
observed that the difference is centered at 0 and is relatively
small.
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Fig. 3: CIM price for two different days (left). Histogram of
price difference between the CIM price and the IA price for
year 2015 (right).

After observing that the IA price was a good feature to
include in the policy parametrization, θ is changed as in
equations 7, 8, 9 and 10 where:
• pmin is the minimum of the IA curve.
• pmax is the maximum of the IA curve.
• α

s/b
1 are the weights that will be optimized using the

REINFORCE algorithm.

µX ← pmin + αs1(pmax − pmin) (7)
σX ← σX (8)

µY ← pmax − αb1(pmax − pmin) (9)
σY ← σY (10)

The idea behind this parametrization is that pmin is a natural
candidate in order to initialize the buy threshold but it is
a really aggressive value because there are chances that the
market will never reach that value (it was the smallest one in
the IA). Therefore, we add a security margin represented by
αs1 which tells us of which percentage should we move from
pmin to pmax. This security margin αs1 will be learned through
experience by the REINFORCE algorithm.

VI. CASE STUDY: TRADING IN THE GERMAN CIM

In this section, we present results from the implementation
of the proposed policy on the German CIM. The data has been
obtained from the European Power Exchange (EPEX). For
the purpose of this case study, we consider a pumped storage
hydro with a maximum storage capacity of 200 MWh. We use
as training set the 200 first days of 2015 and as a test set the
remaining 165 last days of 2015. We will start this section
by presenting our benchmark method, rolling intrinsic (RI)
which is widely used in the industry. Then, we will present
the evolution of our method during the learning phase. Finally,
we will compare the results of our method with RI.

3When we refer to CIM price, we mean the center of the bid-ask spread
at a certain moment.



A. Rolling intrinsic method

RI is a classical benchmark as explained in [17]. The idea of
this method is to accept any trade which gives a positive profit
if the contracted quantity remains in the reservoir bounds. The
optimization model of RI is presented in the online appendix.

B. Learning process

In figure 4, we show the evolution of the profit against the
iteration. At the beginning, the profit increases quickly, then
it stabilizes. This is the classical behavior for reinforcement
learning problem.
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Fig. 4: Profit evolution against the iteration.

C. Profit comparison

In this section, we compare our results with RI on the last
165 days of 2015. As our policy is randomized, the result for
each day is the average of 100 runs. In figure 5, we show
the profit difference per day between our method and RI. On
average, there are 96.16 days at which our profit is better. The
average profit improvement compared to RI is 205.84 Euros
per day which corresponds to an improvement of 4.2%.

-6000 -4000 -2000 0 2000 4000 6000

Profit compared to rolling intrinsic [Eur/day]

0

10

20

30

40

N
u

m
b

e
r 

o
f 

o
c
c
u

re
n

c
e

s

Fig. 5: Extra profit obtained compared to rolling intrinsic
for the different days

VII. CONCLUSIONS AND PERSPECTIVES

In this paper we tackle the problem of CIM trading for
pumped storage hydro resources. We model the problem
using reinforcement learning. We focus on policies that are
parametrized on price thresholds, and we optimize the re-
sulting policy using the REINFORCE algorithm. We test
our threshold policies on the German CIM and compare
this with rolling intrinsic method which is commonly used
in the industry. We demonstrate that our method performs
significantly better than rolling intrinsic method. Moreover our
policy function approximation methods can take decisions by
only comparing the price of the bid with a threshold which
verifies our requirement of short time to take decisions.
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