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Process (MDP). (ii) In order to solve this Markov decision pro-
cess, we employ policy function approximation. We focus on a
threshold policy, according to which we define a sell threshold
above which we accept buy bids, and a buy threshold below
which we accept sell bids. These thresholds can be easily
optimized in the case of a one-dimensional problem, such as
the one presented in this paper. In order to be able to cope with
more complicated settings which cannot be cast as single-stage
MDPs (e.g. CIM trading with a storage asset, or accounting for
impact of agents’ exposure on imbalance prices), we present
a reinforcement learning algorithm [9] and [10] which can be
used for optimizing multiple threshold parameters (e.g. time-
varying thresholds). (iii) We analyze the optimal threshold
under the specific assumption that the intraday and real-time
price are drawn from a bivariate Gaussian distribution. (iv)
We introduce risk aversion in our framework by employing a
concave utility function, and provide the analytical solution to
this problem for a particular class of utility functions.

II. DESCRIPTION OF GERMAN CIM

The different German short-term electricity markets are pre-
sented in figure 1. The CIM commences after the conclusion
of the day-ahead market and the intraday auction. It opens
for hourly products at 3 PM [2] on the day before (D-1) and
for quarterly products at 4PM on D-1. The market closes 30
minutes before delivery [2]. Finally, after delivery, imbalances
are settled at the imbalance price, which we refer to in this
paper as the real-time price. Our contribution is focused on
the CIM.

In the German CIM, bids appear at random moments in
time, and can be selected by any market participant imme-
diately after having been introduced. In this paper we are
interested in determining which bids should be selected by
a trader. We assume that the trader does not own any physical
assets. Thus, if the trader is short (resp. long) in the intraday
market, the trader has to buy (resp. sell) back this position
at the real-time price. In Germany, the imbalance settlement
system is based on a single price, which means that both over-
and under-production are settled at the same imbalance price.
The bids are characterized by a delivery period (hour or quarter
within an hour), a type (buy or sell), a selling or buying
price (in e/MWh) and a quantity (in MWh). For the sake
of clarity, we neglect bids that are linked between multiple
delivery periods and transaction costs.

III. THE CIM TRADING PROBLEM AS AN MDP

We start by presenting our assumptions, and their implica-
tions for the problem. We then explain how the CIM trading
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I. INTRODUCTION

Following the introduction of the climate and energy pack-
age in Europe [1], the penetration of renewable power has
strongly increased in the numerous European countries. These
renewable energy resources increase the variability of supply,
and therefore increase the need to correct the system dispatch
closer to real time. An interesting option for market partici-
pants to balance their portfolios is to trade in the CIM, which
explains the increase of liquidity in this market recently. For
instance, the selling volume in the German CIM has evolved
from 1005 AWh An 2010 Ao 2461 AWh An 2013 And Anally
to A070 AWh An 2016 [2]. Ahe Ancrease Af liquidity An Ahis
market Aecessitates A Aefinement A f A rading strategies.

The design of CIM has been addressed in [3]. Models of
CIM prices have been proposed in [4] and [5]. A number
of papers have focused on CIM bidding strategies, which
is also the topic of our paper. In [6], the authors solve the
problem As A stochastic Aptimal Aontrol problem Aor A
specific
continuous time model of price evolution. The authors in [7]
propose a trading strategy based on the assumption that a
distribution of the price is available for every period. Neither
of these approaches accounts for the fact that trades are binary
decisions. This aspect of the problem is accounted for in [8],
where the authors propose a simple trading strategy which
they test against real data. The goal of the proposed trading
strategy As Ao select Aids Ahat Are Axpected Ao Ae
profitable, Aelative Ao Ahe predicted Ambalance price.

Our contributions in this paper are the following: (i) We cast
the CIM trading problem as a single-stage Markov Decision



Fig. 1: The sequence of operations in German short-term
electricity markets

problem can be cast as a single-stage MDP. After introducing
a parametrized policy based on price thresholds, we compute
an analytical solution to the problem. We finally examine the
properties of the solution for the specific case of a bivariate
Gaussian distribution.

A. Assumptions

In what follows, we assume the following:

1) Traders do not own any physical asset. This assumption
implies that trades taking place in the CIM need to be set-
tled in the real-time market. Thus, the problem is purely
financial. Therefore, it can be solved independently for
different delivery times. Indeed, there is no reason why
the way we trade for bids with delivery time between
3 and 4 PM influences the way we trade for bids with
delivery time between 4 and 5 PM.

2) The cumulative position of a trader does not influence
the real-time price.

These two assumptions imply that each bid can be considered
independently from every other bid.

B. MDP Formulation

Given the preceding assumptions, we can cast the CIM
trading problem as a one-step MDP model. In this text, we
will only present the development for the decision of whether
or not to accept buy bids, the reasoning is identical for
deciding whether or not to accept sell bids. In order to properly
define a one-step MDP, we commence by defining the state
variables, the decision variables and the objective function of
the problem.

• The state of the problem is the intraday price S = {pID}.
• The set of actions is A = {a}, where a is a binary

variable equal to 1 if a bid is accepted, and 0 otherwise.
• Finally, we can define the objective function by

R(pID, a) = E[pID − pRT|pID]a

We are interested in a policy π� which is the solution of

max
π∈Π

J(π)

where J(π) = E [R(S,Aπ(S))] is the likelihood ratio with
Aπ(S) indicating the actions that are selected by following
policy π.

Optimizing over the complete space Π is intractable. In-
stead, we employ policy function approximation. In policy
function approximation, we seek a function π(s, a; θ) which

is parametrized over a vector of the parameters θ, and assigns
a probability for action a if the state is s which is equal to:

π(s, a; θ) = P[A = a|S = s; θ]

We are specifically interested in a threshold policy, which
is defined by:

a = 1 if θ ≤ pID.

This parametric policy implies that we accept a buy bid if the
price is higher than our threshold θ.

C. Analytical solution
If we restrict ourselves to threshold policies and we assume

that we have access to the joint distribution of the intraday
price and real-time price, it is possible to rewrite the problem
as follows:

max
θ

(
E
[
pID|pID ≥ θ

]− E
[
pRT|pID ≥ θ

]) · (1− FpID(θ))

where pID is the intraday price, pRT is the real-time price, and
FpID is the cumulative distribution of the intraday price.

The trade-off in selecting θ is the following: a large value of
θ results in keeping the best-priced offers, however only a few
offers are accepted. On the other hand, choosing a low value
for θ implies that more offers are accepted, however some
are potentially less interesting. We can compute an analytical
solution to the problem, by finding the point at which the
gradient vanishes. 1 We obtain:

θ∗ = E[pRT|pID = θ∗].

Thus, the threshold corresponding to an extreme point is such
that the revenues that we earn from selling to a buyer in the
intraday market are exactly breaking even with the costs of
balancing our position in real time.

After computing the first derivative of the payoff with
respect to θ, we use the second derivative in order to determine
if the point that we find is a minimum, a maximum, or a saddle
point. The detailed derivation is developed in the extended
version of the paper.

D. Bivariate Gaussian case
In order to gain intuition about the optimal treshold policy,

in this section we solve the problem for the case where
the prices are distributed according to a bivariate Gaussian
distribution. Assuming that (pRT , pID) are bivariate normal,
we can write [11]:

E[pRT|pID] = μpRT + ρ
σpRT

σpID

(pID − μpID).

Using this conditional expectation expression, we can com-
pute the extremum θ�:

θ� =
μpRT − ρ

σpRT

σpID
μpID

1− ρ
σpRT

σpID

1 The proof is available in the extended version of the paper, which is avail-
able in the following link: https://sites.google.com/site/gillesbertrandresearch/
publications/eem-paper-2018-extended.



In order to verify whether we have a minimum, a maximum,
or a saddle point, we evaluate the second derivative at the
extremum:

∂2J(θ�)

∂θ2
= fpID(θ�)

(
ρ
σpRT

σpID

− 1

)

We can distinguish 3 cases:

• If ρ
σpRT

σpID
> 1, the extremum is a local minimum.

• If ρ
σpRT

σpID
< 1, the extremum is a local maximum.

• If ρ
σpRT

σpID
= 1, the extremum is a saddle point (see the

extended version of the paper).

Figure 2 illustrates these results graphically. In the figure,
we fix the parameters of the bivariate distribution, and compute
the payoff as a function of θ for different values of σpID .
Several observations can be made:

• The payoff for θ = −∞ is equal to μpID − μpRT = 1.
Indeed, at θ = −∞, E[pRT|pID > θ] is equal to E[pRT].

• For θ = +∞, the payoff is 0. If θ = +∞, all trades are
refused, which explains the zero value of the payoff.

• For σpID = 0.125 and σpID = 0.25, θ� is a local minimum,

because ρ
σpRT

σpID
> 1. For σpID = 0.5, θ� is a saddle point

because ρ
σpRT

σpID
= 1. For σpID = 1 and σpID = 2, θ� is a

local maximum, because ρ
σpRT

σpID
< 1.
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Fig. 2: Profit for different σpID with respect to theta for μpID =
25, μpRT = 26, σpRT = 2 and ρ = 0.5.

IV. RISK AVERSION

The assumption that traders do not influence the real-
time price can lead to a very large imbalance position at
the optimum. Such an exposure is risky, especially when
one factors in the high volatility of the real-time price. One
approach towards controlling the risk of the threshold policy
is to apply a concave utility function to the payoff. The
introduction of risk aversion implies a coupling between bids,
since risk can be mitigated by accepting multiple bids. In order
not to obscure the analysis by introducing multiple bids, we
will continue our analysis under the assumption that only a
single bid is being traded. In this analytically tractable case,
we will demonstrate that bid-ask spread can be induced by risk
aversion. However, we acknowledge that the consideration of
a single bid under risk aversion is a worst-case analysis in
terms of diversification, and that a complete analysis would
require the simultaneous consideration of multiple bids. We
leave this extension to future work.

In this paper, we will investigate the exponential utility
function which can be expressed by:

U(x) = −e(−bx),

where b is a positive parameter. Larger values of b correspond
to greater risk aversion of the agent. In what follows, we
compute an analytical solution to the MDP.

A. Solution in the general case

The expected utility of the payoff is given by:

J(θ) = E[−e−b(pID−pRT)|pID ≥ θ](1− FpID(θ)) + (−1)FpID(θ)

The second term is due to the fact that, if the trader refuses
to trade, the utility is equal to −1. The point at which this
gradient vanishes is given by the following expression (see
the extended version of the paper):

θ� =
1

b
log(E[ebp

RT |pID = θ�])

The consequence of the risk aversion of the producer will
be the increase of θ�, relative to the risk-neutral case. This
follows from Jensen’s inequality, exp(E[X]) ≤ E[exp(X)].

B. Solution in the Gaussian case

We compute the extremum in the case of bivariate Gaussian
distribution (see the extended version):

θ� =
μpRT − ρσpRTμpID

σpID
+

(1−ρ2)bσ2
pRT

2

1− (
ρσpRT

σpID
)

Relative to the case without risk aversion, an additional
term appears in the numerator, which increases the optimal
threshold in proportion to the variance of the real-time price.
Note that if the correlation ρ is equal to 1, then this additional
term is equal to 0. The intuition behind this is that, when
ρ = 1, there is no uncertainty regarding the real-time price
when the intraday price has been revealed.

In the extended version, we compute the second derivative
at the optimum threshold. We get:

∂2J(θ∗)
∂θ2

= fpID(θ�)

(
−b+ bρσpRT

σpID

)
· exp

(
− bθ�

+ bμpRT +
bρσpRT(θ� − μpID)

σpID

+
b2(1− ρ2)σ2

pRT

2

)

The different cases can be defined as in the case without
risk aversion, since the same expression as before is multiplied
by a positive function.

C. Influence of b

In figure 3 we present the payoff for different values of
the parameter b. As expected, the greater the risk aversion
parameter b, the greater the optimal threshold θ∗ that we
obtain. It can be seen that, if b = 0, then we arrive to the
same result as in the case without risk aversion.
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Fig. 3: Payoff for different values of b for the bivariate normal
case with μpID = 25, μpRT = 26, σpID = 2, σpRT = 2 and ρ = 0.

V. RELATIVE VALUE OF BUY AND SELL THRESHOLDS

In this section we analyze the relationship between the
optimal thresholds for buy and sell bids.

In the case without risk aversion, the optimal threshold
for accepting sell orders is given in the general case by the
condition θ� = E[pRT|pID = θ�]. We observe that this is
identical to the optimal buy threshold2.

For the case with risk aversion, the extremum of the payoff
function is given by

θ∗ = −1

b
log

(
E[e−bpRT |pID = θ∗]

)

For the buy threshold, the consequence of the risk aversion of
the producer will be the decrease of θ�, relative to the risk-
neutral case. This follows again from Jensen’s inequality. In
the particular case of a bivariate Gaussian, we get

θ� =
μpRT − ρσpRTμpID

σpID
− (1−ρ2)bσ2

pRT

2

1− (
ρσpRT

σpID
)

The only term that changes compared to the case where
we are determining thresholds for accepting buy orders is that
the third term in the numerator has the opposite sign. As the
intuition suggests, the introduction of risk aversion results in a
bid-ask spread. In order to illustrate this result, we present in
figure 4 the evolution of the spread between the sell and buy
threshold with respect to the standard deviation of the real-
time price for different values of b. We observe that, for small
variance, the spread is negligible. When the standard deviation
increases, the gap between the thresholds also increases. One
further observes that the spread increases as b increases.

VI. LEARNING THE OPTIMAL THRESHOLD

In order to determine the optimal threshold θ in more
complicated settings, it is possible to employ the REINFORCE
algorithm, as defined in [9] and [10]. The goal of the algorithm
is to determine the threshold value θ which maximizes the
payoff on the basis of episodes, or epochs, of learning. An
episode in the context of our problem is simply the arrival of

2Nevertheless, when we apply the REINFORCE algorithm against data
which is, by construction, characterized by a bid-ask spread (because all
remaining orders in the CIM are orders which have not been matched), we
can expect a spread between the thresholds for selling and buying power.
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Fig. 4: Spread between the threshold for buy and sell bids for
different choices of b, with μpID = 25, μpRT = 26, σpID = 2.

a bid in the CIM and the realization of the real-time price.
The learning algorithm is implemented as follows:

• Initialize θ
• for each episode {pID, a, r} ∼ π(pID, a; θ)

θ = θ + α∇θlog(π(pID, a; θ))r

end for

This algorithm requires the derivative of the policy π with
respect to the parameter vector θ. The problem is that if one
employs a deterministic policy, such as the one described
before, we get a non-differentiable policy with respect to the
parameter θ. In order to solve this problem, we employ a
randomized policy as shown in figure 5. The idea is that our
parameter θ is the mean of a Gaussian distribution. We accept a
buy bid with price pID with probability Fθ(p

ID), it is the green
part of the distribution. We refuse a buy bid with price pID with
probability 1 − Fθ(p

ID), it is the red part of the distribution.
This way of modelling the problem matches the intuition that
the higher the intraday price is, the bigger chance we have to
accept it.

−20 −10 0 10 20
−10

0

10

20

30

40

50

pID

θ

π(pID,1;θ)

π(pID,0;θ)

P
ric

e

Fig. 5: Stochastic threshold illustration for a buy bid.

Let us develop the mathematical expression of the threshold
defined previously (Recall that π(s, a; θ) = Pr{at = a|st =
s, θ}).

π(pID, 0; θ) = 1− Fθ(p
ID)

π(pID, 1; θ) = Fθ(p
ID)



In the algorithm, we also need the derivative of the policy with
respect to the parameter, we get

∂π(pID, 0; θ)

∂θ
= fθ(p

ID)

∂π(pID, 1; θ)

∂θ
= −fθ(pID)

VII. CASE STUDY

In this section, we present results for learning the optimal
threshold for accepting buy bids. We first demonstrate the
efficiency of the REINFORCE algorithm for the case where
the price data is drawn from a bivariate Gaussian distribution.
Then we apply this algorithm on real German data.

Figure 6 demonstrates the convergence of the optimal
threshold according to the REINFORCE algorithm. The op-
timal threshold converges to its theoretically optimal value
for the case where the price data follows a bivariate normal
distribution.
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Fig. 6: Convergence of the threshold according to the REIN-
FORCE algorithm for the case of bivariate normal price data,
with ρ = 0 (left) and ρ = 0.5 (right) and μpID = 25, μpRT = 26,
σpID = 2, σpRT = 2, b = 0.1.

In order to test the performance of the REINFORCE al-
gorithm against German CIM, we use the first 4000 hours
data of 2015. We build seven blocks of data to learn and test.
The ith block of the learning set contains data between hour
500·(i−1)+1 and 500·i. Its corresponding test block contains
data between hours 500 · i + 1 and 500 · (i + 1). In order to
make a fair analysis, we present the results for the 4th most
profitable block (median scenario). In figure 7, we show the
cumulative profits. At the end of the period, we get a profit of
20 million euros. In table I, we present the optimal threshold
θ� for different values of the risk aversion parameter b (b = 0
implies risk neutrality).

b 0 0.0002 0.0005 0.001 0.002
θ� (e/MWh) −27.4 −27.4 −27.4 −14 121.2

TABLE I: Optimal threshold θ� for different values of the risk
aversion parameter b.

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper we analyze the problem of CIM trading using
a threshold policy. We model the problem as a one-stage MDP
if we assume that traders’ positions in the intraday market do
not influence the real-time price. We use a policy function
approximation which is parametized by a price threshold

Fig. 7: Cumulative profit achieved by the REINFORCE algo-
rithm against German intraday data.

for accepting bids, and we derive the analytical solution
to the problem. We then analyze the optimal solution for
the specific case of a bivariate Gaussian distribution. We
introduce risk aversion through a concave utility function,
and we prove analytically that higher risk aversion results in
an increasing bid-ask spread for intraday traders, as intuition
suggests. Finally, we apply reinforcement learning in order to
compute the optimal trading threshold, and we demonstrate the
effectiveness of our approach on the German CIM by making
an out of sample test, we obtain a profit of 20 million euros in
500 hours. In future work, we are interested in considering the
case in which the trader influences the real-time price through
its intraday position. In this framework, we face a multistage
MDP, for which we can resort to reinforcement learning in
order to optimize time-varying trading thresholds.
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