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Abstract—Africa has recently engaged in implementing an
aggressive renewable energy integration plan. A major challenge
in the deployment of renewable power is the management of
excess energy. The use of battery storage has been considered as
a technically attractive solution. This paper tackles this opera-
tional problem using stochastic dual dynamical programming.
We present an open-source MATLAB toolbox for multistage
stochastic programming which employs stochastic dual dynamic
programming. We use the toolbox in order to compare the
stochastic solution to a greedy policy which operates batteries
without future foresight as a benchmark. We consider a case
study of storage management in Burkina Faso. We quantify the
benefits of the stochastic solution and test the sensitivity of our
results to the optimization horizon of the stochastic program.

Index Terms—Dynamic programming, storage, solar power

I. INTRODUCTION

One of the greatest social challenges presented in Africa
is the serious energy access gap. Only 37% of the African
population enjoys access to electric power, as compared to
a worldwide average value of 85%. African energy demand
represents 4% of global energy demand. The continent faces
a massive population growth: from 1.2 billion in 2017, African
population is expected to grow up to 2.5 billion (25% of
worldwide population) by 2050. Poor electricity infrastructure
is a key obstacle to economic growth and development in the
continent. There is an urgent need for African countries to be
electrified, and this need represents an opportunity for Africa
to transition towards a renewable energy powered future.

Many initiatives have been launched in recent years in order
to tackle the problem of energy access. One of the most
significant is the Africa Renewable Energy Initiative (AREI)
that was ratified during COP21 on December 7, 2015. The
objective of the AREI is to roll out at least 10 GW of new
and additional renewable energy generation capacity by 2020,
and to mobilize the African potential to install at least 300
GW of renewable capacity by 2030. This would cover the
energy access gap of Africa, while ensuring universal access to
sufficient amounts of clean, appropriate and affordable energy
for all Africans by 2030, and while helping African countries
leapfrog to renewable energy systems that support their low-
carbon development strategies.
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The aggressive renewable energy integration agenda that
Africa has embraced is expressed by a strong cooperation
between African countries: the West Africa Clean Energy Cor-
ridor (WACEC) was launched in 2017, with the objective of
accelerating the deployment of utility scale renewable energy
into the region. Led by the International Renewable Energy
Agency (IRENA) and uniting 14 West African countries,
WACEC plans to install 10 GW of renewable capacity into
the grid by 2030. Initiatives in this direction are further exem-
plified by a number of solar generation projects in Senegal,
Mali, Burkina Faso and Niger.

In Burkina Faso, numerous projects are underway. The
Zagtouli Photovoltaic (PV) power plant announced during
COP21 was concretized and started producing 33 MW in
September 2017. The construction of a new 20 MW PV facility
in Zina was announced on June 2017 and its construction is
underway. In 2015, 89% of the electricity that was consumed
in Burkina Faso was generated from fossil fuels, whereas 15%
was imported from neighboring countries [1]. This configura-
tion of renewable supply is not satisfactory, since it represents
a significant cost and is not adequate to fully cover power
demand. Renewable energy resources present an interesting
alternative to imports and fossil fuel resources for Burkina
Faso, as they are clean and perceived as being more affordable
[2].

A major challenge in the deployment of solar power, also
raised by WACEC, is the management of excess energy during
the day, while there is a lack of energy to supply the load
during the evening. The large-scale development of battery
storage could be a satisfactory complement for the large-
scale development of solar PV in countries such as Burkina
Faso. Since renewable energy supply and demand cannot be
perfectly forecasted, the operational planning of the system
at each time period should in principle account for this
uncertainty. This presents a problem of decision making under
uncertainty, which is treated in this paper as a multi-stage
stochastic optimization problem.

In this paper we approach the problem using Stochastic Dual
Dynamical Programming (SDDP). The SDDP algorithm has
been most successfully applied in the context of medium-term



multi-stage hydrothermal scheduling under rainfall uncertainty
for handling water levels of hydro reservoirs [3]. We imple-
ment the SDDP algorithm on FASTB an open-source MAT-
LAB toolbox originally developed at the Université Catholique
de Louvain.

Two-stage stochastic unit commitment formulations are
commonly used for investigating the operation of storage in
short-term operations. The authors in [4] consider a two-
stage formulation, with day-ahead unit commitment in the first
stage and optimal deployment of storage against realized load
forecast errors, wind forecast errors and line and generator
outages in the second stage. A similar two-stage stochastic
unit commitment model is developed in [5], where commit-
ment and reserve decisions are determined in the day ahead,
followed by real-time dispatch against load and wind forecast
errors. The stochastic unit commitment model of [[6] dispatches
conventional units in the first stage, and determines scenario-
dependent unit commitment decisions in the second stage.
Stochastic programming is used in [7] for obtaining weekly
and daily pumped hydro reservoir targets, with reservoir levels
being considered as non-anticipative decisions. The hourly
dispatch of pumped hydro resources over the duration of a
week is solved for by [8], who uses two-stage stochastic
unit commitment in order to cope with wind uncertainty and
fuel cost uncertainty. Decomposition algorithms for a two-
stage stochastic optimal power flow model with an explicit
consideration of non-linear power flow constraints have been
recently proposed by [9].

Compared to the above literature on two-stage stochastic
models, the literature on multi-stage stochastic real-time dis-
patch is relatively less developed. Two-stage robust optimiza-
tion is employed in [10], and further extended in [11]. The
problem has also recently been investigated by [12], [13] in
the context of flexible ramping products, but with emphasis on
policy analysis rather than computational challenges. Multi-
period stochastic economic dispatch has also been set forth
by [14] with an emphasis on efficient sampling methods.

The contributions of this paper can be summarized as
follows: (1) From a policy standpoint, African power systems
present novel technical challenges in terms of managing
renewable resources due to their unique capacity mix. In
particular, two features of certain African systems are unique,
relative to more standard systems that are examined in the
literature: (i) the high share of solar power production, and
(i1) the lack of sufficient capacity for adequately satisfying
demand. These specific features feed into the second con-
tribution of the paper: (2) from a modeling standpoint, the
paper demonstrates the great potential of multistage stochastic
programming in optimizing the management of storage in a
system with adequacy challenges, where one faces a significant
cost of utilizing domestic thermal resources. Finally, (3) from a
computational standpoint, the paper presents an open-source
software developed by the authors for solving SDDP which

Uhttps://web.stanford.edu/~lcambier/fast/

can be used for rapid deployment of stochastic programming
solutions on MATLAB.

II. THE FAST TOOLBOX

The optimal operation problem with discrete time steps
t € T ={1,2,...,H}, where H is the horizon of the
problem, can be expressed as a multi-stage stochastic linear
program. We consider a discrete set of realizations of un-
certainty following a Markov process. We define €2; as the
discretized sample space at stage t and ;) as the set of
possible histories up to stage t. Every realization of history
Wiy € y has a unique ancestor A(wy)) € Q;—1). Then the
problem can be expressed as follows:

H
min T
p Tt wie) Ct,wy Tt,wiy

t=1 wiy €Qpy)
Wt,wtl‘t,w[t] = ht,wt - ﬂ,wtxt—l,A(W[t])7 te T? w[t] € Q[t]

Tt gy >0,teT, wry € Q[t]
ey
where w; € §Q; is a realization, Tty is the probability of
history wp; in stage ¢, ¢ ., are the cost coefficients, hy ., are
the right-hand side parameters, W, ., are the coefficients of
the current period decision variables Tt s T}, are the coef-
ficients of the previous period decision variables ;1 A(wp)
and LT, is the set of state and action variables at stage ¢.
The size of this problem grows exponentially in the number
of time steps for a fixed number of realizations of uncertainty
at each time stage, thus it is impossible to solve since the size
of the problem becomes intractable for practical applications.
The SDDP algorithm, which we will use to solve the multi-
stage stochastic linear program, decomposes the problem (IJ
into a collection of subproblems which are called nested L-
sharped decomposition subproblem (NLDSﬂ At each stage
t € T and for each outcome k € §;:

NLDS; . : min Cka + Vik(x)

Wt,kﬂ? = ht,k - Tt,kit—l 2)
x>0

where V; i (z) is a piecewise affine convex value function
which represents the expected future cost of the remaining
stages when the decision is z for stage ¢ and outcome k.
Note that z;_; is the fixed solution from the previous stage
t — 1, thus it will be treated as a parameter for NLDS .
Unfortunately, V; ;. (z) remains a difficult function, which may
involve up to (H — t)! operations to be evaluated. Since V; j
is convex, it can be expressed in the form

Vir(®) > Virly) + Vi) (x — v), 3)

where 0V} 1 (y) is a subgradient of V, j taken at y. We define
Vi1, as the lower approximation of V;  using (@) with a small
set of subgradients. Since f/tk(:c) is a simple piecewise affine
convex function, NLDS, ; can be cast as a tractable linear
program.

2See http://uclengiechair.be/wp-content/uploads/2017/05/SDDP.pdf
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The idea of the SDDP algorithm is to solve the problem by
generating promising candidates of decisions, and improving
the description of the approximate value function f/tk() in
the neighborhood of these promising solutions. The idea of
the algorithm is to quickly ‘zoom in’ on the relevant parts
of the value functions, and avoid spending unnecessary time
on approximating the value function around decisions that are
anyways not interesting.

The forward pass of the algorithm generates candidate
solutions, by drawing Monte Carlo samples of uncertainty over
the entire horizon of the problem. For each sample, one steps
forward in time by solving problem and generating input
for the NLDS of the next time step.

With the candidate decisions of the forward pass at hand,
one then generates improved approximations of f/t);,c in the
backward pass of the algorithm. For this purpose, one uses the
dual multipliers generated from the resolution of NLDS; 11 j
for all & € Q.41. The detailed theory supporting the algorithm
is not repeated here and can be accessed in e.g. [3], [15], we
focus instead here on presenting the aspects of the algorithm
that are necessary for using the FAST toolbox.

The fact that the underlying uncertainty is assumed to be
Markov implies that the value function for stage ¢ + 1 can be
expressed as V; 1, (). The underlying discrete Markov process
can be described by a lattice, which is characterized by the
number of time stages, the outcomes at each time stage, and
the transition probabilities from a node of a given stage to
another node of the following time stage.

More precisely, each stage ¢ consists of a set of nodes
{1,...,]4|}, and for each of the outcomes k € {1,...,|Q|},
¢t and hy g are the corresponding realizations of the random
vectors ¢, and hy,,, respectively. Similarly, T} ;, and Wy j
correspond to the realizations of the random matrix 7}, and
Wi ., respectively. In addition to describing the realization
of these random parameters, it is necessary to describe the
transition probability from a node k to ki1 € {1,...,|Q1]|}
in order to complete the description of the lattice.

The FAST Toolbox provide an implementation of the SDDP
algorithm, but also an easy way to model all NLDS (like CVX
[L6] or YALMIP [17]). Moreover, the toolbox is designed in
a way that all NLDS are compiled at the beginning (i.e., the
problem is transformed into the format of problem (I))), so
that forward and backward passes are performed quickly. The
problem can thus be efficiently solved by providing only the
description of all NLDS; ., and the transition probabilities
Plwit1|we]. Internally, this data is stored in an object called
Lattice (denoted by L), which is the core element of the
toolbox.

A. Creating the lattice

The lattice is composed by H stages, where each stage
contains |{;| nodes, one per realization w;. Its main purpose
is to summarize the probability of transition from one node to
another. The toolbox presents several tools to form the lattice,
for example this line forms a lattice modeling the result of H
rounds of “head or tails”,

L = Lattice.latticeEasy(H, N); % N = 2.

and each node is stored in L{t}{j}, with j € {1,...,N}.
The parameter N is equal to the number of scenarios in a
stage, in our case N = 2 because the possible outcomes are
heads or tails. In the node L{t }{j} are stored ¢, j, the NLDS
model (which is not yet created) and the transition probabilities
for the nodes in the next stage. This basic function set these
probabilities to 1/, but more complex constructors exist. The
most flexible is

L = Lattice.latticeEasyMarkovNonConst (H,P)

which creates a Lattice with H stages with a variable number
of nodes. The argument P is a cell array of size H — 1,
where P{t} (i, j) represents the probability of transition from
realization ¢ at time ¢ to realization j at time ¢ + 1.

B. Modeling the NLDS

The toolbox provide a way to easily model the NLDS
with standard Matlab syntax. We show here the modelization
of a simple problem. At each time step ¢, we receive a quantity
of goods (), and we have to decide to sell a quantity z; at a
random revenue R, or to stock with a cost of C', where the
total amount of storage is s;.

NLDS,, s, , 'min —R,, -x: +C - s¢

Te+ 5 =Q+ 541 4)
Ze, 8¢ > 0

The constraint means that the total amount of goods at time ¢,
S¢—1 + Q, is divided into x; (the amount we sell) and s; (the
amount of stock at time ¢). The modelization part is divided
into two steps. First, we have to declare the variables x and s
in the main script, using the function sddpVvar,

var.x = sddpVar(l,H); var.s = sddpVar (1l,H)

For simplicity, we put all the variable inside one structure
called var. Now, we have to write a function which builds
the NLDS for a given time ¢ and scenario w;. In our example,
we assume that C' = 1/2, and at each time step the price can
be cheap (R, = 1) or expensive (R, = 2).

function [constr,obj] = nlds(sce,var)

Q = 10; C=1/2; t = sce.getTime();

R = l*(sce.index==1)+2+* (sce.index==2);
positivity = [var.x(t)>=0, var.s(t)>=0];
if(t == 1)

stock=var.x (t)+var.s (t)==0Q;

else

stock=var.x(t)+var.s(t)==Q+var.s(t-1);
end

obj = -Rxvar.x(t)
constr = [positivity,

+ Cxvar.s(t);
stock];

C. Running the algorithm

It remains to compile the lattice, i.e., the software will
explore all nodes of the lattice L and transform the NLDS
into a standard form for optimization solver. The main script is



written below, which runs the SDDP algorithm on our problem
with basic settings.

L = Lattice.latticeEasy(H, N); $ N = 2.
var.x = sddpVar (H); var.s = sddpVar (H);

L = compilelLattice(L,@(sce)nlds (sce,var));
output = sddp(lattice);

It is possible to tune many parameters of the algorithm, such
as the number of forward passes or the termination criterion.

D. Modeling Alternative Policies

In addition to solving for the stochastic solution, the FAST
toolbox allows the user to define alternative policies by spec-
ifying linear programs that should be solved at each stage ¢
and for each outcome k, in the same way that the user defines
an NLDS for the stochastic program.

For example, we can introduce a greedy policy which
optimizes at each stage without foresight. This is done by
introducing at each stage ¢, and for each outcome k € €, the
following linear program in the toolbox:

G M, : min ¢
i
Wi ke = ht,k- =Ty pTt1 o)
x>0

Note that, as in , the previous stage decision Z;_1 is treated
as a parameter, while x, the solution of @), will be the current
decision. What differentiates this policy from the stochastic
policy is the fact that the value function approximation f/t k()
is no longer present. Such policies can be introduced by using
the forwardPass function of the toolbox, and avoiding
using sddp itself (to not build the cuts). A perfect foresight
policy can also be simulated by using the waitAndSee
function.

III. MODEL DESCRIPTION

We now describe the multi-stage stochastic optimal storage
operation problem by describing the NLDS (2) for a given
stage t € T and outcome w;. We drop the indices ¢ and
wy in order to lighten notation. In what follows, parameters
and functions are denoted by upper case letters and decision
variables are denoted by lower case letters.

The objective is to minimize the expected cost caused by
power production, imports, and load shedding:

min | Y Cylpy) + CI-pi+ VOLL-1s (6)
geG

where G is the set of generators, Cy(-) is a piecewise affine
convex cost function corresponding to generator g € G which
is producing pg, CI is the the cost of imports (assumed
constant), pi is the amount of imported power, VOLL is the
value of lost load, and [s is the amount of load shedding.
The net load, VL, is defined as the difference between
the load and the PV power. This is the stochastic input to
the system, which appears in the right-hand side h¢ j of the

constraints in (Z). Although we model the load and PV power
processes separately (see section [[V]), we represent net load as
a single process in the lattice.

We ignore transmission constraints in this study, although
these can be tackled by SDDP [18]]. The power balance
constraint can then be written as follows:

NL+Zpdj —i—ps:Zpbj + Zpg+pi+ls (7
jeJ JjEJ geG

where J is the set of batteries, pb; if the power supply
when discharging batteries, pd; is the power demand when
charging batteries, and ps corresponds to shedding excess
power production.

The dynamics of the batteries is expressed as:

pb; :
Sj = Sju—1+ (773‘ “pdj — J) v Jed ®)
Hj
where s; represents the storage of battery j at the current stage
t, while s;;_1 is a parameter which refers to the storage of
battery j at the previous stage t—1. n; (< 1) is the efficiency of
charging and 1; (< 1) is the efficiency of discharging battery
J.
The following operating constraints are additionally intro-
duced in the NLDS:

S; < STj,pdj < PDj,pbj < f)Bj7 j eJ
pi < PI )
PMing <py < PMaz,, g€ G

where ST} is the maximum storage capacity of battery j, PD;
is the charging capacity of the battery, PB; is the discharge
capacity of the battery, PI is the import capacity limit,
PMax, is the production capacity of conventional generator
g, and PMing is the technical minimum of conventional
generator g.

Finally, we impose non-negativity constraintsﬂ:

ZS,pS,pi,Sj,pbj,pdj,pg,cg Z Oa gec G7.7 eJ (10)

IV. LATTICE GENERATION

We solve the SDDP problem on a lattice in which nodes
are associated with net loads and edges are associated with
transition probabilities. To build a lattice of net load, we first
generate a stochastic model of PV power production and power
demand, and we then simulate them (assuming that they are
independent) in order to estimate transition probabilities for
net load.

3There is currently no power market in the West African Power Pool
(WAPP) countries, and exchanges are ruled by bilateral agreements. Burkina
Faso has a contract with Ivory Coast to import from Ivory Coast at a specific
rate, but they do not have any contract to export to Ivory Coast (during the
period 2012-2014, exports from Burkina to the Ivory Coast represented a total
of 10 MWh while exchanges in the other direction represented 1368 GWh).
Because Ivory Coast plans to invest massively in power generation, there is
no willingness on their side to conclude import contracts with Burkina Faso.
It is thus very difficult to value exports in our model, because there is no
guarantee that the energy could effectively be sold to the Ivory Coast.



A. PV Power Production Stochastic Model

We follow the method proposed by [19], which is based
on nonparametric kernel density estimation of the conditional
probability distribution of solar power production. The imple-
mented model is able to account for the correlation of PV
power between adjacent time steps, and model the uncertainty
of sunrise and sunset related to random factors such as shading
of the PV panels.

We divide the model into two parts, (i) generating joint
probability density functions (PDF) and (ii) sampling time
series.

(i) Generating the joint PDFs

1) Find the start/end moments of PV generation output in
dataff]

2) Estimate the joint PDF f,,, : start/end moments of PV
output, ts and ..

3) Estimate the joint PDF of PV power fpy 1+ att—1
and t using kernel density estimation.

The profiles are generated in a time-sequential manner, thus
the computation time will just increase linearly as the number
of time steps is increased.

(ii) Sampling time series

1) Define d the number of hours, and n the number of
scenarios.

2) Initialize the output vector PV =
[PVi1, PVia, ..., PV;4] to be zero for i = 1,2,...,n; let
=1

3) Generate random samples tss and t.s from fg,, by
applying inverse transform sampling; let ¢t = ¢5.

a) Generate a random sample of PV power produc-
tion from fpy:—1 . by applying inverse transform
sampling.

b) If t > t.s exit; else let t = ¢+ 1 and go back to
step

4) If i > n exit; else let ¢ = ¢+ 1 and go back to step [3]

B. Power Demand Stochastic Model

The distribution of power demand is based on univariate
kernel density estimation for hourly time data, since the dis-
tribution depends strongly on the time of the day. Our analysis
of the case study data indicates that there is a significant
difference between power demand in weekdays and weekends,
thus we separate the data and generate one PDF for weekdays
and one for weekends. The sampling method is basically
the same as above, except that the first part is replaced by
separation of data and estimation by univariate kernel density
distribution.

C. Lattice of Net Load
We now build the lattice of net load using PV power and

load scenarios generated by the above methods. Since net load

4In [19]], the authors mention that “the moments of PV generator to start and
stop producing power are affected by sunrise/sunset and other reasons, like
sensitivity of the power measurement device, or shading on the PV arrays.”

is defined as the difference between load and PV power, it can
be negative.

Recall that H is the horizon of the model. Denote || as
the number of nodes at each time step except the first stage,
and n as the number of samples that we generate in order to
populate our lattice. Further denote PV; = [PV;1,..., PV;y]
and L; = [L;1,...,L;g] as the vectors of generated samples
of PV power and demand for day ¢ respectively. Let NL; =
[NLj1,...,NL;g] denote the net load of day %, with NL;; =
L;j—PVi;fori=1,...,nandj =1,..., H. We now possess
n daily samples of net load over H time steps. In order to
determine the value of net load associated to each node, we
proceed as follows:

1) For each time step (j = 2,..., H)

a) Generate n samples of net load and sort the data
of net loads in ascending order.

b) Discretize the process by dividing the net load
values into |{2| ranges so as to ensure that each
range has the same amount of net load data.

c¢) Compute the mean of net load at each range.

Then the transition probabilities can be computed by counting
the transition ratio of the n samples from one bin to another
over consecutive time steps. This yields an |Q] x || x H —1
tensor which is implemented in the FAST toolbox using the
lattice generation function of the toolbox.

V. CASE STUDY

We consider a case study of storage management in Burkina
Faso. We use one year of data for calibrating our stochastic
model. After describing the system settings, we focus our
analysis on (i) the comparison of the SDDP solution with
the greedy policy, and (ii) the analysis of the impact of the
time horizon of the stochastic program on the value of the
stochastic solution and on computation time. This problem is
made availableP]

A. System Settings

1) Parameters: Table [l represents the data that we employ
in the model. We follow the notation introduced in Section [l
We consider a single generator with a constant marginal cost,
C(p) = MC - p. We also set the technical minimum of the
generator PMin, to be zero. We consider a system with five
batteries, which are empty at the beginning.

We denote PV cap as the installed PV capacity. We use the
toolbox in order to model a greedy policy according to which
we charge the battery if the system has an excess of energy
(negative net load) and discharge the battery otherwise.

2) Lattice: We build a lattice of net load using 1,000
samples of weekday PV power and load. The starting hour of
the day is set to 7 a.m., which is the earliest time of sunrise
in samples. We use || = 10 lattice nodes at each stage.

Shttps://github.com/bl-uno/Optimal-Management-of-Storage-in-Burkina-
Faso-Case-Study
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TABLE I

THE PARAMETER VALUES APPLIED TO THE CASE STUDY
Parameter Notation | Value  Unit
Storage capacity of battery j ST 1,000 MWh
Capacity of battery charging PD;j 200 MW
Capacity of battery discharging PB; 200 MW
Capacity of imports PI 200 MW
Production capacity of thermal unit ~PMaxy 300 MW
Technical minimum of thermal unit ~ PMing 0 MW
Cost of imports CcI 100 $/MWh
Marginal cost of thermal unit MC 200 $/MWh
Value of load shedding VOLL 1,000 $/MWh
Battery charging efficiency nj 0.95
Battery discharging efficiency g 0.97
Installed PV capacity PVcap 1,872  MWp

3) Termination Criterion: The number of Monte-Carlo
simulations at every forward pass is set to K = 25. We
set the algorithm to terminate at the 10th iteration, which is
sufficiently large to satisfy both Pereira and Pinto [3[], and a
small standard deviation criterion whereby the algorithm is
terminated only when the standard deviation of the mean cost
estimated in the forward pass is small enough with respect
to the lower boundsﬂ All of the problems are solved using
Gurobi.

B. Performance Comparison

1) Results on a 4-day Forecast: We test a 4-day horizon for
SDDP and the greedy method, and generate 1,000 samples in
order to assess the performance of the different policies. We
summarize the computational results in table

The average total cost of SDDP is 1,279,115% and its 95%
confidence interval is [1,261,040%, 1,297,191%] The average
objective value of our benchmark is 1,849,804% and its 95%
confidence interval is [1,819,220%, 1,880,389%] On average
the proposed method results in savings of 570,689$, which
amounts to 30.9% of the total cost compared to the greedy
strategy. Regarding the SDDP solution, we observe that we
hardly need to use the high-cost domestic fossil fuel gener-
ators, and that the total cost consists almost entirely of the
imports which are the most economical option. The stochastic
policy does not shed load. In the greedy policy load shedding
occurs, even though its effect on the total cost is small on
average.

We present the dispatch under a single sample in Fig.
for SDDP (left) and the greedy policy (right). Note that the
abscissa axes, time stage begins from 7 a.m. in real time. The
stochastic policy uses the generator at the beginning, when the
batteries are empty and demand cannot be covered by imports
alone. In subsequent periods the oversupply of solar power is
stored in the batteries up to ST}, however this is not sufficient
for satisfying the load during the night. The stochastic solution
anticipates shortage during the night, and therefore imports
electricity as soon as the battery storage capacity allows it, in
such a way that the expected total demand needed until sunrise
can be covered only by batteries and imports. We also observe

6See https://web.stanford.edu/~Ilcambier/fast/tuto.php#std

TABLE 11
AVERAGE PERFORMANCE FOR 4-DAY HORIZON WITH 1,000 SAMPLES

SDDP Greedy
Cost ($) Percentage | Cost (3) Percentage
Total 1,279,115 1,849,804
Generator 146,442 11.4% 1,018,955 55.1%
Import 1,132,673 88.6% 659,943 35.7%
Load shedding 0 0% 170,906 9.2%

that the stochastic solution uses imports during daytime, even
when there is a negative net load. The imported energy is
charged to the batteries in order to avoid using the high-cost
domestic thermal unit during the night, since the maximum
amount of imports PI is limited. However, on the first night,
since the PV production is not sufficient to cover the high load,
it is not possible to satisfy the positive net load by the batteries
and imports alone. Hence, the stochastic solution resorts to the
thermal unit during hour 24.

In the case of the greedy strategy, following sunset the
batteries are used first, and always run out of energy. Imports
are then required. As the imports are not sufficient for fully
covering the load, the high-cost domestic thermal generator
is also used. Moreover, at hour 89 and 91 some load is shed
since imports and domestic power capacity are not sufficient
for covering the positive net load.

2) One-day Lattice Vs. Four-Day Lattice: Theoretical anal-
ysis and empirical observations demonstrate that extending the
optimization horizon increases the computing time of SDDP
roughly linearly for a fixed number of iterations. We have
also observed that we require more iterations for satisfying the
termination criterion of section as the horizon increases.
In table [IlI] we demonstrate that, compared to a 4-day horizon,
the 1-day horizon results in a reduction of computation time
by 76.3% given our chosen termination criterion.

In order to further analyze the trade-off between solving
the problem over a short horizon (one day) versus a longer
horizon (four days), we compute the value function ‘7247;@@)
(see ), at hour 24 on the 4-day lattice using the 24-hour
solutions xo4 of both the 1-day and the 4-day horizon model.
Running 1,000 samples, we obtain the results shown in table
Solving the problem on a 4-day horizon provides a benefit
of 3.7%.

TABLE III
COMPARISON BETWEEN 4-DAY AND 1-DAY HORIZONS

‘ Mean of Va4(z) ($)
870,231
903,647

Computation time (s)

4-day

1-day 229

VI. CONCLUSION

This paper proposes an approach for the short-term op-
eration of storage with renewable energy sources using the
SDDP algorithm. In the case study of Burkina Faso on a
4-day horizon model, the algorithm results on average cost
savings of 30.9% relative to a greedy storage dispatch policy.
It is shown that the SDDP solution is effective in dealing
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Figure 1. Running a forward pass with a 4 days horizon

with the following trade-off: in the daytime, it is desirable
to use the energy generated by PV power, on the other hand
it is also important to store power for use at night in order
to avoid operating high-cost domestic thermal generators in
case the system runs out of import capacity. The proposed
problem does not represent some significant properties of the
economic dispatch model, such as transmission constraints or
ramping constraints, although promising computational results
are available in this regard [18].
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