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Abstract—We present a distributed asynchronous algorithm
for solving the two-stage stochastic unit commitment problem.
The algorithm uses Lagrangian relaxation to decompose the
problem by scenarios and applies an incremental method to
solve the dual problem. At each incremental dual iteration, the
algorithm evaluates the dual function, providing a lower bound,
and recovers a feasible commitment for first stage units, which
(through a feasibility recovery process) results in an upper bound.
Both the incremental dual iterations as well as the feasibility
recovery are executed asynchronously, resulting in more efficient
utilization of parallel processors. The method is tested on a model
of the Central Western European system, for which it achieved
convergence three times faster than an equivalent distributed
synchronous algorithm.

Index Terms—stochastic unit commitment, incremental sub-
gradient method, asynchronous algorithm, distributed optimiza-
tion

I. INTRODUCTION

The large-scale integration of renewable energy has mo-
tivated applications of stochastic programming, and recently
also robust programming, in power systems planning and
operations. The advantage of these optimization paradigms is
that their application to the unit commitment problem serve
as systematic approaches to schedule production and reserves
in electric power systems facing the increased operational
uncertainty resulting from the integration of renewable energy
resources.

Stochastic unit commitment has been examined in the
context of wind power integration. Research demonstrates su-
perior performance relative to deterministic ad-hoc scheduling
methodologies in the presence of wind power [1], [2], as
well as under uncertain conditions resulting from wind power
production and contingencies [3].

The stochastic unit commitment problem is commonly
solved using dual decomposition [4], [5]. The customary
choice is to decompose the problem across scenarios, by taking
the Lagrangian dual with respect to the non-anticipativity
constraints. Once a dual problem is at hand, several techniques
are available to solve it, including subgradient methods, the
progressive hedging algorithm [6], proximal point algorithms
and bundle methods among others. As the evaluation of the
Lagrangian dual is decomposable across scenarios, it can be
parallelized at each iteration of the dual problem. The increase
in distributed computing capacity (multi-core, multi-processor
and multi-node architectures) has been recently exploited for

solving large-scale scale models through progressive hedging
[7] and subgradient methods [3], [8].

Two main solution approaches have been proposed for the
robust unit commitment problem. One approach relies on a de-
composition scheme that sequentially iterates among a master
and a slave problem, inspired by Bender’s decomposition [9].
The other approach [10] is based on a parallelizable column-
and-constraint generation algorithm that allows for second
stage discrete variables.

All of the aforementioned parallel (or parallelizable) algo-
rithms for solving stochastic and robust unit commitment share
an important drawback: they require synchronization points,
i.e. at each iteration all the subprocesses run in parallel but
the algorithm must wait until all subprocesses are finished
before moving to the next iteration. This results in an under-
utilization of the parallel computing infrastructure.

One solution to this drawback would be to replace the
iteration method (gradient, subgradient, proximal point) by
its incremental version. An incremetal method computes the
update direction, at each iteration, based on the information
of part of the objective function. These methods have a
long tradition in differentiable optimization, and have been
recently utilized in non-differential optimization problems,
such as the ones arising from dual decomposition. Incremental
subgradient methods were first studied by Kibardin [11], and
have been the subject of a series of contributions since then,
see Nedić and Bertsekas [12] and references therein for a
review. Nedić et al. [13] propose and prove the convergence
of an asynchronous incremental version of the subgradient
algorithm. Kiwiel [14] presented a unified convergence frame-
work for approximate subgradient and incremental subgradient
methods. More recently, Bertsekas [15] proposed the extension
of these incremental methods to proximal point algorithms.

This paper presents a distributed asynchronous algorithm
for the two-stage stochastic unit commitment problem, which
is based on the dual decomposition presented in [3]. The dual
problem is solved by an asynchronous distributed subgradient
method. Primal recovery is also handled asynchronously, by
gathering a feasible commitment for first stage units at each
incremental iteration, which is then feed to a queue for primal
recovery.

The rest of the paper is structured as follows: Section II
briefly introduces the two-stage stochastic unit commitment
problem and the dual decomposition algorithm. Section III
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presents the asynchronous algorithm, the dual iterations and
the primal recovery method. Section IV presents a numerical
comparison of the synchronous and asynchronous method,
using the Central Western European system as a case study.
Section V presents conclusions and outlines extensions of this
work.

II. TWO-STAGE STOCHASTIC UNIT COMMITMENT AND
DUAL DECOMPOSITION

Unless specified otherwise, lower case letters denote vari-
ables, Greek letters denote dual variables, upper case letters
denote parameters or sets and bold typeset denotes vectors.
Vectors with partial indexation are used to shorten the no-
tation, e.g. if p = [pg1,s1,t1 . . . pg|G|,s|S|,t|T | ]

′ then ps =
[pg1,s,t1 . . . pg|G|,s,t|T | ]

′ and pgs = [pg,s,t1 . . . pg,s,t|T | ]
′.

Following Papavasiliou et al. [8], the two-stage stochastic
unit commitment problem can be formulated in a compact
fashion as problem (1)-(5).

min
p,u,v,f
w,z

∑
s∈S

∑
g∈G

∑
t∈T

πs
(
Cg(pgst) +Kgugst + Sgvgst

)
(1)

s.t.
∑
g∈Gn

pgst +
∑
l∈Ln

flst = Dnst, ∀n ∈ N, s ∈ S, t ∈ T

(2)
(ps,us,vs,fs) ∈ Ds, ∀s ∈ S (3)
(w, z) ∈ Dwz (4)
ugs = wg, vgs = vg, ∀g ∈ GSLOW, s ∈ S (5)

The first stage represents the day-ahead scheduling of slow
thermal generators, and the second stage accounts for real-time
operations with different realizations for net demand (demand
minus renewable energy supply). The variables include power
production pg , commitment ug and startup vg for each
generator g ∈ G, the flow f l on each line l ∈ L, and the state
variables wg and zg for each slow generator g ∈ GSLOW. All
variables, except for wg and zg , are indexed by scenario.

The objective function (1) minimizes the expected gen-
eration cost over the set of scenarios S, where πs denotes
the probability of a given scenario s. The generation cost is
composed of the fuel consumption cost Cg(·) (a piece-wise
linear function), the fixed on cost Kg and the startup cost Sg .
Constraints (2) correspond to the power balance at each node
n ∈ N . The uncertain net demand of each node is denoted as
Dnst. Constraints (3) enforce the variables to be in the domain
Ds, which includes integrality constraints (for commitment
decisions), minimum and maximum power output, ramp-up
and ramp-down constraints, minimum up and down time
constraints and DC power flow constraints. Constraints (4)
enforce operating constraints on the state variables wg and zg .
These constraints are redundant in the extended form of the
model, but necessary for the decomposition algorithm. Non-
anticipativity constraints for slow generators are imposed by
Eq. (5).

The variables ps,us,vs,fs are coupled only through the
non-anticipativity constraints (5). Therefore, the application

of Lagrangian relaxation to these constraints (5) generates a
dual problem which is decomposable across scenarios. Let the
Lagrangian function be expressed as equation (6):

L =
∑
s∈S

πs

(∑
g∈G

∑
t∈T

(
Cg(pgst) +Kgugst + Sgvgst

)
+

∑
g∈GSLOW

∑
t∈T

(
µgst(ugst − wgt) + νgst(vgst − zgt)

))
.

(6)
Then the dual problem can be expressed as the uncon-

strained maximization problem (7), with dual variables µ and
ν.

max
µ,ν

∑
s∈S

fs(µs,νs) + g(µ,ν), (7)

The objective function of the dual problem (7) is composed
of the functions fs(·), defined in Eq. (8) for each scenario s:

fs(µs,νs) =

inf
p,u,v,f

∑
t∈T

(∑
g∈G

(
Cg(pgst) +Kgugst + Sgvgst

)
+

∑
g∈GSLOW

µgstugst + νgstvgst

)
s.t.

∑
g∈Gn

pgst +
∑
l∈Ln

flst = Dnst,∀n ∈ N, t ∈ T

(ps,us,vs,fs) ∈ Ds.
(8)

The evaluation of these functions requires solving a determin-
istic unit commitment problem. The other component of the
lower bound is the function g(·), defined in equation (9):

g(µ,ν) =

inf
w,z

∑
s∈S

∑
g∈GSLOW

∑
t∈T
−πs

(
µgstwgst + νgstzgst

)
s.t. (w, z) ∈ Dwz

(9)

This evaluation requires solving a scheduling problem that
accounts for the minimum up and down times of slow units.

Both functions fs(·) and g(·) are concave, non-differentiable
functions, consequently the optimal solution of the dual prob-
lem (7) can be found by applying the subgradient method,
proximal point method or other algorithms for convex non-
differentiable optimization.

The decomposition algorithm is described in detail in [3],
[8]. At each subgradient iteration k, the algorithm evaluates
in parallel the dual functions for the current value of the dual
variables µk,νk, which provides a lower bound (the objective
of the dual problem) and a subgradient qk, rk for the dual
objective, given by relation (10)

qkgst = πs(u
∗
gst − w∗gt), ∀g ∈ G, s ∈ S, t ∈ T

rkgst = πs(v
∗
gst − z∗gt), ∀g ∈ G, s ∈ S, t ∈ T,

(10)



where u∗s,v
∗
s are the optimal values computed during the eval-

uation of fs(µks ,ν
k
s) and w∗, z∗ the optimal values computed

during the evaluation of g(µk,νk).
The subgradient is used to update the value of the multipli-

ers and a feasible primal schedule for slow units is recovered
from w∗, z∗. This schedule is used in order to evaluate the
second stage cost of problem (1)-(5), providing an upper
bound. The difference between the upper and lower bound,
i.e. the duality gap, is used as a stopping criterion.

III. ASYNCHRONOUS ALGORITHM

The algorithm outlined in the previous section is a syn-
chronous parallel algorithm since all the dual component
functions need to be evaluated before moving to the next
iteration. In the same sense, primal recovery (second stage
cost evaluation) is executed after recovering w∗, z∗, i.e.
primal recovery is synchronized with dual iterations. These
synchronization points result in an under-utilization of parallel
processors whenever the time that is required for evaluating the
functions fs(·) varies substantially across scenarios, which is
often the case. This section presents an alternative algorithm,
that is based on the same decomposition scheme described
in the previous section, but avoids synchronization points by
using an incremental subgradient method.

A. Incremental subgradient methods

Incremental subgradient methods are of interest when facing
convex optimization problems of the form (11)

max
x∈X

∑
i∈I

hi(x), (11)

where X is a nonempty, closed, convex set and the component
functions hi(·) are concave but non-differentiable.

Incremental methods, in general, are based on the idea that
it is possible to perform an incremental update based only on
the information of some subset of the component functions
as long as, in some average sense, the series of incremental
updates emulate full updates.

In the case of non-differentiable component functions,
Nedić and Bertsekas [12] described and established conver-
gence results for the incremental subgradient method, when the
subgradient is evaluated for the current value of the variables
xk. An extension of such results is presented in Nedić et
al. [13] for the distributed asynchronous subgradient method,
where the authors examined convergence of an incremental
method with bounded delays in the subgradient computations,
assuming that all the component functions are used with the
same frequency as the number of iterations tends to infinity.
This method does not require any synchronization point and
allows for delays among the processes that compute the sub-
gradients of the component functions, which often occurs in
distributed implementations. More general convergence results
were later provided by Kiwiel [14], whom allowed for errors
in the computation of the subgradients.

The update rule of the asynchronous incremental subgra-
dient for problem (11) at the k-th iteration can be described

as (12), where qji is a subgradient of the component function
hi(·) at the j-th iteration and PX denotes the projection onto
X .

xk+1 := PX

(
xk + αkqji

)
, i ∈ I, qji ∈ ∂xhi(x

j), j ≤ k

(12)
The incremental step (12) can be used for updating multi-

pliers, however the computation of a lower bound presents a
challenge. As different components are evaluated with differ-
ent values of x due to delays or the existence of a queue (in the
case that the number of processors is smaller than |I|), there
is no lower bound computed from the dual problem. In other
words, the dual algorithm will converge but it would require
the evaluation of all the component functions for certain x’s
to produce lower bounds.

B. Dual algorithm and lower bound computation
Suppose that the problem (7) is solved using an incremental

update rule, and let k be the index of the current iteration and
θ the index of the most recently evaluated component function
fθ(·). At the k-th iteration, all other component functions
ft(·), t 6= θ have already been evaluated for some µj(t)t ,ν

j(t)
t ,

with j(t) < k. Therefore, after evaluating fθ(µkθ ,ν
k
θ) a lower

bound can be obtained by evaluating the dual objective (7) for
the dual variables µj ,νj , defined by relation (13), at the cost
of evaluating g(µj ,νj).

µj :=
(
µ
j(t1)
t1 , . . . ,µkθ , . . . ,µ

j(tn)
tn

)
, tl 6= s

νj :=
(
ν
j(t1)
t1 , . . . ,νkθ , . . . ,ν

j(tn)
tn

)
, tl 6= s

(13)

Note that µj ,νj corresponds to the concatenation of all the
dual multipliers for which the functions fs(·) were lastly eval-
uated. This lower bound can be computed at each incremental
iteration using equation (14)1.

LBk = fθ
(
µkθ ,ν

k
θ

)
+
∑
t∈S
t6=θ

ft
(
µ
j(t)
t ,ν

j(t)
t

)
+ g(µj ,νj) (14)

Provided that the evaluation of the function g(·) is much
faster than the evaluation of fs(·) (which is the case in our
decomposition approach), the additional computational burden
required in order to obtain a lower bound at each iteration is
negligible. Moreover, since the subgradients of fθ(·) and g(·)
at µj ,νj are available after computing the lower bound, an
incremental subgradient update can be made on µ,ν according
to (15)

µk+1
θ := µkθ + αkπθ(u

∗
θ −w∗)

µk+1
t := µkt , ∀t ∈ S, t 6= θ

νk+1
θ := νkθ + αkπθ(v

∗
θ − z∗)

νk+1
t := νkt , ∀t ∈ S, t 6= θ,

(15)

1The evaluation of fs(·) and g(·) requires solving MILP problems. Conse-
quently, the computation of the lower bound of (14) requires using the lower
bound of the branch and bound algorithm.



where u∗θ,v
∗
θ are the optimal values from the evaluation of

fθ(µ
k
θ ,ν

k
θ) and w∗, z∗ the optimal values from the evaluation

of g(µj ,νj).
The incremental update rule (15) already accounts for the

incremental subgradient iterations of g(·), thus there is no
need to consider a parallel process that generates incremental
updates based on g(·), in fact doing it would violate the as-
sumption that updates from the different component functions
are used with the same frequency [13]. In a broader sense the
update rule (15) can be interpreted as an approximate subgra-
dient update2, for which convergence results are provided in
[14]. Consequently with [14, Theorem 3.4], the chosen step
size for the incremental iterations is the diminishing (non-
summable) step size of equation (16):

αk =
a

k + b
(16)

In summary, each incremental subgradient iteration consists
of four steps: (i) evaluate fs(µks ,ν

k
s), (ii) evaluate g(µj ,νj),

(iii) compute a lower bound according to (14) and (iv) update
the dual multipliers of scenario s using Eq. (15). These steps
can be executed in parallel for each scenario, without any
synchronization point.

C. Primal recovery

As mentioned previously, a feasible commitment for slow
units can be obtained at each iteration from the evaluation of
the function g(·). For the system studied in this paper, these
primal candidates exhibit poor performance during the early
subgradient iterations. Another source of primal candidates
are the optimal solutions from the function evaluations fs(·).
These additional candidates accelerate the convergence of the
upper bound substantially, possibly due to the fact that their
computation involves the solution of an entire unit commit-
ment problem.

Consequently, the present algorithm obtains a primal candi-
date c, i.e. a unit commitment schedule uc,vc that respect the
minimum up and down times of slow units, from the evaluation
of fs(·) at each incremental subgradient iteration. To produce
complete primal solutions, these primal candidates need to be
evaluated for their second stage cost for each scenario. As in
the case of the dual function evaluation, the computations of
the second stage costs can be parallelized.

D. Algorithm implementation

Even though the iterations described in the previous subsec-
tions do not require synchronization, they do require commu-
nication among processors. In the case of dual incremental
iterations, the lower bound evaluation and the update rule
requires knowledge of the value of the last dual multipliers
evaluated for the other scenarios, while the primal recovery
procedure requires knowledge of the slow generator commit-
ments from the dual iterations. Moreover, following the update

2In practice, the subgradient method is also an approximate subgradient
method since the MILP problems involved evaluation of the functions fs(·)
and g(·) are only solved up to a certain accuracy.

Coordinator
1− LB/UB < ε

dual
incremental
iterations

primal
feasibility
recovery

µk,νk, fk
s

µk+1,νk+1, fk+1
s

uc,vc

uc,vc

f̃c
s

Fig. 1. Asynchronous algorithm implementation scheme.

of the upper and lower bound it is necessary to compute the
current optimality gap and decide whether or not to terminate
the algorithm. All these tasks can be executed by a coordinator,
using the implementation scheme depicted in Fig. 1, where
f̃ cs stands for the second stage cost of primal candidate c in
scenario s.

In practice, the time between two incremental iterations is
smaller than the time that takes to evaluate the second stage
costs for any primal candidate, hence new primal candidates
must enter a queue prior to be evaluated for the second stage
costs. Jobs are also queued during the computation of the
dual function if the number of processors available is lower
than the number of scenarios. These queues are managed by
the coordinator, and in the implementation discussed in the
case study they are executed following the first-in-first-out
principle.

IV. NUMERICAL RESULTS

The asynchronous algorithm was tested on a typical autumn
day in the Central Western European system, which includes
Austria, Belgium, France, Germany, Luxembourg, the Nether-
lands and Switzerland. The transmission network corresponds
to the model of Hutcheon and Bialek [16], with 679 nodes and
1037 lines. Generator data were obtained from GDF Suez.
The system consists of 639 thermal units. 20 scenarios for
renewable energy supply were selected from the historical
records of autumn 2013.

The algorithm was implemented in Mosel and XPress [17]
and it was executed on a Macbook Pro with 12 cores (2 ×
Intel Xeon X5650) and 32GB of RAM. A 0.5% MIP gap was
used for the evaluation of fs(·) and f̃ cs , and a 0.1% for the
evaluation of g(·).

The problem was solved using the asynchronous algorithm
and a synchronous algorithm based on [3] that also recovers
primal candidates from the evaluation of fs(·). For the asyn-
chronous version, half of the processors where dedicated to
dual incremental iterations and the other half to primal recov-
ery. Fig. 2 shows the performance of both algorithms in terms
of iterations. The step size parameters are set such that both the
asynchronous and synchronous algorithm start with the same
step size, however the step size of the synchronous algorithm
is set to decrease |S| times faster per iteration, so that (roughly
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speaking) |S| incremental subgradient iterations are equivalent
to one subgradient iteration (in Fig. 2, at any iteration of the
synchronous algorithm, the asynchronous algorithm uses the
same step size). Under these conditions, the dual incremental
subgradient method is a bit faster than the subgradient method,
in terms of equivalent iterations. In terms of run time, the
asynchronous algorithm required 7 hours and 35 minutes to
achieve a 1% optimality gap, while the synchronous algorithm
required 21 hours and 32 minutes. This difference is mainly
due to the synchronization points between dual iterations and
feasibility recovery; the asynchronous algorithm continuously
iterates over dual and primal, therefore even if the number of
queued primal candidates is huge, they just wait on the queue
while the dual iterations continue, as opposed, the synchronous
method first iterates on dual and then on primal, evaluating
exhaustively all the new primal candidates found on each
iteration.

If the synchronous algorithm were limited to primal feasibil-
ity recovery using the optimal solution of g(·), the best upper
bound found up to the 16th iteration would be 43.9MMe,
more than 53% higher than the best objective function that
we were able to compute. In that case, the algorithm would
not converge until g(·) would start producing good candidates,
even if the dual function is already close to its optimum. This
highlights the importance of primal feasible solution recovery
in dual decomposition schemes.

V. CONCLUSIONS

This paper presents an asynchronous algorithm for the
two-stage stochastic unit commitment problem based on La-
grangian relaxation and the asynchronous incremental subgra-
dient method. The observed convergence of the incremental
subgradient method is very similar to the one of the subgradi-
ent method, on the other hand the lack of synchronization
points results in substantial speedup of the asynchronous
method compared to the subgradient method.

The implementation of the method in a high performance
computing environment and the extension of the presented
framework to incremental proximal point algorithms [15] will
be explored in future research.
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