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Abstract-The utilization of inverters for the interconnection of 

distributed generators to the grid requires application of control 
systems capable of regulating the active and reactive output 
current, ensuring high power quality levels and achieving 
relative immunity to grid perturbations. This paper proposes a 
simple current control scheme, based on the combination of 
deadbeat and PI control, for a three-phase voltage source 
inverter connected to the grid via an LCL filter. The control 
system is analyzed in the frequency domain and an analytical 
expression for the harmonic content of the output current is 
derived. Theoretical analysis and computer simulation results 
validate the stability, fast transient response and robustness of 
the proposed system to network disturbances, variations in filter 
parameters and measurement errors. 

Keywords-DC/AC inverters, current control, LCL filter, PI 
control, deadbeat control, dq transformation.  

I. INTRODUCTION 
Power electronic converters are being increasingly utilized 

in distributed generation (DG) applications for the 
interconnection to the grid of the primary energy source, be it 
a PV array, a small wind turbine, a microturbine, a fuel cell 
etc. Converters utilized are typically one- or three- phase 
voltage source inverters, depending on the size of the source, 
connected to the grid via a filter, which in principle acts as a 
low-pass impedance attenuating the high frequency switching 
harmonics of the inverter. 

Recently, LCL filters are gaining momentum as an 
attractive alternative to the simple series inductance output 
filters in high power quality applications. An important 
advantage of LCL filters is their capability of attenuating 
harmonics at lower frequencies, which is a significant feature 
for high power applications, and also their capacity for precise 
control of the output current. However, control systems 
involving LCL filters are inevitably more complicated and 
attention is required in their design for operation under 
distorted terminal voltage conditions. 

Available literature concerning the control systems of LCL 
filtered inverters focuses on variations of the deadbeat 
predictive control and the PI control. Proposed strategies vary 
with respect to the target of control and the structure of the 
inner and outer loops. Simple strategies focus on the direct 
control of a single variable, such as the output or inverter 
current (respectively at grid- or inverter-side of the filter) [1]. 
A common approach comprises an outer control loop for 

capacitor voltage control [2] and an inner control loop for the 
inverter current. The drawback of this strategy is that the 
output current may be sensitive to grid perturbations, because 
it is not directly controlled. Another proposition is the 
implementation of an inner control loop for the capacitor 
voltage, which supports the control loop of the output current 
[3]. More complicated multivariable control techniques have 
also been proposed [4]. 

This paper proposes a novel and effective control strategy 
for DC/AC voltage source converters, connected to the grid 
via LCL filters. Compared to other controllers of the literature, 
the structure of the proposed control system, shown in Fig. 1, 
is rather intuitive, simple and straightforward. The output 
current is regulated via a PI controller whose output 
determines the current reference for an inner-loop deadbeat 
controller. Thus, the overall control is decomposed into two 
cascaded parts, facilitating the application of control analysis 
techniques for the design of a robust and well-damped control 
system. The proposed system is analyzed with respect to its 
transient response and its stability. The harmonic performance 
of the system is also evaluated, with emphasis on its harmonic 
impedance, as viewed from its output terminals, extending the 
results of previous work on the subject [5]. Time-domain 
simulation results are presented, in order to validate the 
theoretical analysis of the control system. 

II. CONTROL STRATEGY 
Fig. 1 explains the structure of the control system, which 

includes an external PI control loop for the output current 
regulation, stabilized by an inner loop deadbeat controller for 
the inverter current. The goal of the control scheme is to 
regulate the output current by appropriately modulating the 
PWM inverter. This is achieved in two stages: the output 
current iL2 error is fed to a PI controller, which generates the 
reference value iL1

* for the inverter current. The PWM inverter 
is then modulated according to the output of the inner 
deadbeat controller. 

In Fig. 1, Zs=Rs+jLs is the grid impedance, corresponding to 
a short circuit capacity Sk. For the derivation of transfer 
functions in the following, this impedance is incorporated in 
the impedance L2 of the filter, yielding L=L2+Ls, R=Rs. The 
inverter is assumed to have a nominal capacity of 100 kVA.  

 
 



 

 
Figure 1: Simplified block diagram of the system, including the controllers. 

 
In the analysis presented in the following, the dc voltage 

input to the inverter is assumed to be constant, which is an 
acceptable approximation when a reasonably large 
capacitor is connected at the inverter input. The output 
voltage of the modulator is modeled as a constant dc 
voltage per modulation period Ts (100 µs) equal to the 
average value of the input dc voltage. The sampling period 
for the deadbeat control is equal to Ts. Both the deadbeat 
and PI controllers are analyzed in the synchronous dq 
frame, which significantly simplifies controller design and 
stability analysis. 

A. Deadbeat and PI Controllers 
The deadbeat controller is presented in Fig. 2. For a 

sufficiently short PWM carrier period, Ts, it is possible to 
calculate the transfer function of the deadbeat controller 
with difference equations in the z-plane. Application of the 
z-transform implies that the capacitor voltage is considered 
constant throughout Ts, which is valid for sufficiently high 
switching frequencies. The controller is quite simple in 
principle. Feedback of iL1 is amplified by L1/Ts and added to 
the measured capacitor voltage vb, thus yielding the voltage 
signal V* which is fed to the modulator. Given that vb 
remains constant over Ts, the transfer function of the above 
system is given by eq. (1). 

 

 
Figure 2: Control diagram for iL1. The diagram refers to d 

and q axis components. 
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where the transfer function Gp(z)=Vab(z)/IL1(z)1 of L1 is 
given by equation (2): 
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Assuming a sufficiently small Ts, Gp(z) in eq. (2) is 
simplified and substituted in eq. (1) yields: 
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The structure of the external PI control loop is presented 
in Fig. 3. For the analysis in the following, the assumption 
is made that the output of the PI control is actually iL1, not 
iL1

*, because, as shown in eq. (3), iL1 follows iL1
* with a lag of 

Ts, which is sufficiently small to ignore. The system is s-
transformed on the dq frame. The transfer function of the PI 
controller is then given by eq. (4), i.e. the d and q axis 
currents are controlled via independent regulators. 

 

 

Figure 3: PI control of i . The diagram refers to d and q 

axis components. 
2L

 
1Symbols in bold denote vectors transformed in the synchronous dq frame.  
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Gp(s)=Va(s)/IL2(s)2 is the transfer function of the network 
formed by C, L2 and the grid impedance (see Fig. 1). The 
state equations of this subnetwork are given by eq. (5), 
where ω is the frequency of the synchronous dq frame, 
(100π rs-1 for a 50 Hz network): 
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Omitting the laborious algebra, an accurate 
approximation of the transfer functions of the PI controller 
on the synchronous dq frame is eventually given by eqs. 
(6). 
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where D(s) is the characteristic polynomial of the transfer 
functions and a=-R/L, b=1/L, c=1/C. The PI controller 
ensures zero steady state error for the output current. 

B. Stability Analysis 
Since no specific value can be used for the Thevenin 

impedance of the network, L2 is not used as a design 
parameter, in order to achieve robustness of the control 
scheme to grid impedance variations. Large values of C 
were observed to increase settling time, in addition to 
increasing the current through the capacitance and therefore 
the inverter switches. On the other hand, a combination of 

increased proportional gain and low capacitance causes 
overshoot and increased settling time. Large proportional 
gains cause large current overshoot without improving 
settling time, whereas variations in Kp, below a certain 
threshold, do not affect the system response. The integral 
gain was the most significant control parameter, and the 
locus in Fig. 4 is therefore drawn with respect to variations 
in Ki. Due to the presence of zeros in the neighborhood of 
the complex poles, the transient response of the system is 
dominated by the negative real pole. Hence, large values of 
integral gain significantly improve transient behavior, at the 
expense however of increased overshoot, due to the 
ineffective cancellation of the complex pairs of zeros and 
poles. Filter and control parameters were therefore chosen 
as a trade-off between speed of response and sufficient 
damping, i.e. stability margin: C=50 µF, L2=10 µH, 
Kp=4·10-4, Ki=200. In order to determine a value for L1, the 
system was design to resonate at fres=1850 Hz in a grid with 
Sk=20SN (where SN=100kVA is the rated inverter capacity). 

 
2 Under symmetric conditions, it can be shown that . Hence, the 

notation V is adopted. 
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Figure 4: Root locus for , Nk SS 20= kVASN 100= . 

 
L1 was chosen so as to achieve a resonance frequency of 

8.15 kHz for the LCL filter. This is a desirable frequency 
because of its distance from the switching frequency, 
resulting in significant attenuation of switching harmonics. 
Assuming a symmetric network, the circuit of Fig. 1 can be 
analyzed per phase and the following transfer equation is 
obtained for the output current iL2 with respect to network 
voltage: 

LCLsCRLsLLsRV
I

a

L

1
3

1
2

21 )(
12

++++
=  (9) 

The above transfer function is analyzed in the frequency 
domain to obtain the resonance frequency. The first order 
conditions are given by the following equation: 
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Solving the above quadratic equation with respect to L1 
for a resonance frequency of fres=8.15 kHz, it is obtained 
L1=1.1 mH. 

III. HARMONIC IMPEDANCE 
In this section the effect of grid voltage distortion on the 

output current is investigated, by assuming the presence of 
specific harmonics at the terminal voltage. The goal is first 
to transform eqs. (6) to the natural phase coordinates 
(denoted 123) in order to identify the effect of design 
parameters in the attenuation of harmonics of the output 
current, induced by the distortion of grid voltage. 

The harmonic impedance of the system, as seen from the 
inverter terminals, is given by eq. (12), (its derivation is 
given in the Appendix): 
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where n is the order of harmonic distortion, ω=2π f=100π 
is the angular speed of the rotating dq system, and 
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In eq. (13), A3(s), A4(s) and P(s) are expressed in terms of 
the numerators Nij of the polynomials gij appearing in eqs. 
(7): 
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Figure 5: Bode diagram of transfer function IL2(s)/Vc(s) 

(Sk=20SN). 
 
 

In Fig. 5 the Bode diagram of the transfer function is 
shown. Apparently, the system is capable of effectively 
attenuating low frequency harmonic distortion, inevitably 
present in the terminal voltage, which will not affect the 
output current significantly. The resonance has been tuned 
at relatively high frequencies (34th harmonic), that is well 
beyond the usual grid voltage distortion range, to ensure 
trouble-free operation of the system. 

IV. SIMULATION RESULTS 
In the following, results are presented from the 

simulation of the inverter, using Matlab-Simulink. In Fig. 6 
the response is shown to a step increase of the output 
current reference iL1

*. The response time is clearly shorter 
than one cycle (20 ms), while the steady state error is zero, 
confirming the good performance of the current controllers. 

Control analysis and time-domain simulation results also 
confirm that the stability and transient behavior of the 
system are not affected by grid impedance variations, 
verifying thus the robustness of the control to changing grid 
conditions. 

The important issue of the harmonic performance of the 
inverter is outlined in Figs. 7 and 8. In Fig. 7 the harmonic 
spectrum of the output current is shown, for operation of 
the inverter at rated power and terminal voltage conditions. 
First it is observed that the LCL filter effectively attenuates 
all switching frequency harmonic components (around 10 
kHz and its multiples). The overall THD value of 1,6% is 
satisfactory and it is related to the spectral content around 
the 34th harmonic order. This is due to the under-damped 
transient oscillations, associated with the mode evident in 
the resonance of the Bode diagram of Fig. 5. 

The other important consideration regarding the 
harmonic performance of the system is its behavior in case 
of distorted grid voltage conditions, as discussed in Section 
III. Fig. 8 shows the low order harmonics of the output 
current when the inverter is connected to a polluted grid, 
whose voltage comprises harmonics of the 5th, 7th and 11th 
order, respectively equal to 5.2%, 4.1% and 3% of the 
fundamental [6]. Now the output current inevitably exhibits 
increased low frequency distortion. However, the 
magnitude of the individual harmonics is low and the 
overall THD value is absolutely acceptable. 

The system was also tested for robustness with respect to 
parameter values. In order to observe the effect of errors of 
parameter values in stability and control precision, we 
introduce a 15% error between the estimated and the actual 
value of L1 and C with L1r=1.15L1=1.625 mH, where L1r is 
the true value of the inductance and L1 is the value used in 
the control system. The transfer function of the deadbeat 
controller now becomes: 
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Figure 6: Step response of output current i (S

2L k=20SN). 

 
Figure 7: Harmonic spectrum of output current  

( ). 
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Figure 8: Harmonic spectrum of output current , when 

the inverter operates under distorted grid voltage 
conditions ( ).  
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Transforming eq. (15) in the time domain yields: 
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The output of the deadbeat controller is not exactly 
equal to the control signal, but depends on the relative error 
of L1 and the former value of iL1. However, the switching 
period is much smaller than L1/L1r, so the output of the 
deadbeat controller remains unaffected, with a very good 

approximation. Thus, due to the high switching frequency 
employed in the system, the effect of the error in the 
stability and precision of the control is negligible. This is 
evident in Fig. 9, where the transient response is plotted 
with and without error in L1. 
 A similar test was conducted for an actual value of the 
capacitance C1r=1.15C1=75 µF. The accuracy of the 
control is not affected by this error since C does not enter 
as a parameter in the control loops. However, the roots of 
the transfer functions are shifted. The new poles, calculated 
from eq. (9), are given in Table 1. The system remains 
stable and simulation confirms the theoretical results. 

Finally, the system was checked for robustness with 
respect to the characteristics of the grid. The poles of the 
system, calculated for a weaker grid (Sk=10SN), are 
presented in Table 2. The results confirm that the stability 
properties remain unaffected, although the transient 
response presents now a differentiation in the frequencies 
and damping of the oscillations. 

 
TABLE I 

POLE  POSITIONS WITH AND WITHOUT C VALUE ERROR 

 
Without error With error 
-51±j11099 
-148±j11096 
-45±j10470 
-148±j10468 
-200±j0.06 

-52±j9119 
-148±j9117 
-45±j8491 
-148±j8489 
-200±j0.1 

 

TABLE II 
POLE  POSITIONS IN CASE OF WEAK GRID (SK=10SN) 

 
-57±j8052 
-153±j8051 
-49±j7424 
-153±j7423 
-200±j0.1 

 

 
Figure 9: Transient response for L1r=1.1mH (no error) and 

L1r=1.265 mH (with error).  



 

V. CONCLUSIONS 
This paper proposes a control strategy for a voltage 

source inverter with an LCL output filter, suitable for 
interfacing dc voltage sources to the grid. The proposed 
control system is simple, exhibits satisfactory transient 
response and robustness to grid impedance variations. The 
linearized equations of the system are used to derive 
transfer functions, in order to select controller parameters 
and analyze its small signal stability. Its response 
characteristics are verified via time-domain simulation. The 
effectiveness of the LCL filter in attenuating the output 
current distortion is demonstrated and the important issue 
of the input harmonic impedance of the system is analyzed, 
verifying the immunity of the proposed controller to grid 
voltage distortion. 

VI. APPENDIX: DERIVATION OF EQ. (12) 
In the following, the notation ω=2πf=100π r/s is used for 

the angular velocity of the rotating dq axis. First, eqs. (7) 
are transformed to the stationary frame. The identities 
cos(a)=(eja+e-ja)/2, sin(a)=(eja-e-ja)/2j, as well as the 
Laplace transform property L{ejωtf(t)}=F(s-jω) are applied 
in the inverse Park transformation of iL2 to obtain the 
following equation: 
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A similar expression can be obtained for Vc. Next, 

combining eqs. (6) with eqs. (A1) and the corresponding 
expressions for the voltage, it is eventually obtained: 
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where ga,r, ga,i are the real and imaginary parts respectively 
of ga(s) defined in eq. (13) (similarly for gb,r, gb,i). There 
still remains to express the second term of the right hand 
side of eqs. (A2) (denoted Vc’ in the following) as a 
function of Vc. Considering a grid voltage harmonic 
component which is of order n and symmetric, its dq 
transformation to the synchronous frame, rotating at 
angular speed ω, will be: 
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where φ is the angle of phase 1 with respect to the rotating 

frame at time 0 and V  is the amplitude of the considered 
harmonic. Substituting eq. (A3) to eq. (A2) and omitting 
the algebra, it is finally obtained: 
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 (A4) 
Comparing to the Laplace transform of Vc, evaluated at 
s=jnω, it is deduced: 
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Substituting eq. (A5) back to eq. (A2) yields eq. (12).  
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