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Notations

A A matrix, usually of size m× n unless stated otherwise.
Aij The (i, j) entry of the matrix A.
AT The transpose of the matrix A.
A∗ The hermitian of the matrix A (conjugate transpose).
Tr(A) The trace of a square matrix A ∈ Cn×n, defined by Tr(A) := ∑N

i=1Aii.
diag(A) The vector composed of A’s diagonal elements, if A ∈ Cn×n, diag(A) ∈ Cn.
A � 0 The hermitian matrix A ∈ Cn×n is positive semi-definite, i.e zTAz ≥ 0, ∀z ∈ Cn.
I The identity matrix.
0 The zero matrix, all its entries are zero.
Re{z} The real part of the complex number z.
Im{z} The imaginary part of the complex number z.
|z| Magnitude of the complex number z.
∠z Argument of the complex number z.
x = y Two complex numbers are equal if and only if both their real and imaginary parts are equal.
〈x, y〉 The inner product of two matrices (vectors), x, y ∈ Cm×n, defined by Re

{
Tr(x∗y)

}
.

‖x‖2 The norm of a matrix (vector) x ∈ Cm×n is defined as
√
〈x, x〉.

|N | The cardinality of the set N , i.e. the number of elements of the set N .
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Introduction

The optimal power flow (OPF) problem is fundamental in power system operations and planning
because it underlies many applications such as economic dispatch, unit commitment, state estimation,
volt/var control, demand response, etc. This problem seeks to control power generation/demand to
optimise certain objectives such as minimising the generation cost or power loss in the network, subject
to power flow equations and operational constraints. This optimisation problem has been extensively
studied since Carpentier’s first formulation in 1962 [Car62]. Numerous algorithms have been proposed
for solving this highly non-convex problem, including linear programming, quadratic programming,
nonlinear programming, interior point methods, neural networks, fuzzy logic, genetic algorithms, etc.

It’s becoming increasingly important for distribution networks due to the emergence of high penetra-
tion of distributed generation and controllable loads such as electric vehicles. This continued growth of
highly volatile renewable sources on distribution systems calls for real-time feedback control. Solving
the OPF problems in such environment has at least two challenges :

• First, the exact solution to the OPF problem is very difficult (NP-hard) to obtain for general
networks due to its non-convex constraints, namely magnitude constraints on complex-valued
bus voltages, and non-linear equality constraints corresponding to Kirchhoff’s Laws which govern
power flows in electrical networks. There are generally three ways to tackle the non-convexity:
(i) use linear approximations of the power flow equations; (ii) employ nonlinear solver to find
local optimum; (iii) exploit convex relaxations of the non-convex constraints. After a short
discussion about the first two approaches, the rest of this paper will be focused on the third.

• Secondly, most algorithms in the literature are centralised and meant for applications in to-
day’s energy management systems (central schedule of a relatively small number of generators).
However, in future, the growing number of controllable devices will make a central approach
impracticable because of its computation cost. In this thesis, a fully decentralised algorithm
able to solve the OPF problem is proposed. Through optimisation decomposition, the original
OPF problem is decomposed into several local subproblems that can be solved simultaneously.

Due to these challenges, the current practice in the electricity industry is to use the so-called DC-OPF
approximation. In contrast, the original non-convex OPF is usually called the AC-OPF (alternating
current). DC-OPF uses a linearization of AC-OPF by exploiting some physical properties of the
power flows in typical power systems, such as tight bounds on voltage magnitudes at buses and small
voltage angle differences between buses. However, such an approximation completely ignores important
aspects of power flow physics, such as the reactive power and voltage magnitude. To partially remedy
this drawback, the current practice is to solve the DC-OPF problem and then to solve a set of power
flow equations with the DC-OPF solution to compute feasible reactive powers and voltages. However,
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it is clear such an approach cannot guarantee any optimality of the AC power flow solution obtained.
The rest of this paper will be focused on the convex relaxations of the non-convex constraints of
AC-OPF, hereafter denoted by OPF. The structure of this thesis is the following:

• The first part focuses on recent advances in the convex relaxation of the optimal power flow
problem in the special case of distribution networks. Most of those works assume a single-
phase network while distribution networks are typically multiphase and unbalanced [Ker01b].
Although the single-phase formulations will not be directly used in the sequel, it provides some
useful background for the understanding of the multi-phase formulation.

• The second part of this thesis is dedicated to the elaboration of a decentralised algorithm based
on the alternating direction method of multipliers (ADMM), briefly described. Unlike existing
approaches, the problem structure is exploited in order to decompose the OPF problem in such
a way that the subproblems at each iteration reduce to either a closed-form solution or an eigen-
decomposition of a 6 × 6 hermitian matrix; which significantly reduce the computational time.
Moreover, since the method is completely decentralized, and needs no global coordination other
than synchronizing iterations, the problem can be solved extremely efficiently in parallel.

• In the third part of this thesis, we demonstrate the effectiveness of the algorithm by testing it on
made-up networks and real distribution networks. Specially, we show that the proposed convex
relaxation of the optimal power flow problem is generally exact for the IEEE test feeders.

• Finally, we briefly review the main results presented in this work and discuss some directions
for future research (Local Stopping Criteria, fast ADMM, multi-step programming).
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Part I

Formulation of the Optimal Power
Flow Problem
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1 | The OPF Problem on Single-Phase
Distribution Networks

In this chapter, we describe the formulation of the constraints which govern power flows in electrical
networks in the case of single-phase distribution networks. We show that two different models can be
used to formulate the OPF problem, namely the bus injection model and the branch flow model. In
particular, the tow formulations are showed to be strictly equivalent.

It’s interesting to consider both models because some relaxations are much easier to formulate in one
model than the other. For instance, the semidefinite relaxation has a much cleaner formulation in
the bus injection model. Whereas the branch flow model has a convenient recursive structure that
allow a more efficient computation [CB90]. Moreover, it also play a crucial role in proving sufficient
conditions for the exactness of the convex relaxation (see e.g.[GLTL12]).

1.1 Bus Injection Model

The bus injection model aims at formulating the OPF problem according to nodal variables, such as the
voltage and the net power injection (generation minus load). In this section, we describe two different
relaxations, a semidefinite relaxation and a second-order cone relaxation of the OPF problem [Low13].
We show the equivalence of those two relaxations and point out that in case of radial networks, one
should always use the second-order cone relaxation [BLTH14].

1.1.1 Formulation of the OPF problem

A distribution network is composed of buses and branches connecting these buses. Moreover, it’s
assumed to be radial, i.e. has a tree topology. The root is called the substation node and holds the
responsibility for drawing the power from the the transmission network to the distribution network
for power balance. The substation bus is indexed by 0 and the others buses from 1 to n. Let’s denote
N the set of all buses and N+ the set of all buses except the substation node. The set of all lines is
E . We say that (i, j) ∈ E if i→ j. And if i→ j, or i→ j, then i ∼ j, otherwise i � j.

For each line in the network (i, j) ∈ E , let yij = gij − ibij denote its admittance and zij = rij + ixij its
impedance such that yijzij = 1. For each bus i ∈ N , let Vi denote its voltage and Ii denote its current
injection. A bus i ∈ N can have a generator, a load, both or neither. The spot loads are specified and
the generations are variables to be determined. Let si = pi + iqi denote the power injection at node i
where pi and qi are the active and reactive power injections respectively (generation minus load). The
substation node is assumed to have a fixed voltage and a flexible power injection. A letter without
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Chapter 1. The OPF Problem on Single-Phase Distribution Networks

subscript denotes a vector of the corresponding quantity, e.g. V = (V1, . . . , Vn)T .

Given a network (N , E), the admittances y and the substation voltage V0, the other variables (s, V, I, s0)
must satisfy the following constraints :

• Current balance and Ohm’s law :

Ii =
∑

j:j∼i

(
Vi − Vj

)
yij ∀i ∈ N

• Power Balance :
si = ViI

∗
i ∀i ∈ N

Those two sets of equations can be combined to get rid off the variables Ii.

si = Vi

∑
j:j∼i

(
V ∗

i − V ∗
j

)
y∗

ij ∀i ∈ N (1.1)

(1.1) is referred as the power flow equations. For each bus i ∈ N , there are two operational constraints.
First, the constraint on the net power injection si can be captured by some feasible power injection
set Ii, such that si ∈ Ii. A common set is for example:

I1 :=
{
p+ iq ∈ C | pi ≤ p ≤ p̄i, qi ≤ q ≤ q̄i,

}
In that case, if we combine these constraints with (1.1), we obtain :

si ≤ Vi

∑
j:j∼i

(
V ∗

i − V ∗
j

)
y∗

ij ≤ s̄i ∀i ∈ N (1.2)

It’s usually assumed that there is no limit on the power injection at the substation node, i.e. −s0 =
s̄0 = +∞. However, such assumption is not essential to our model. Secondly, the voltage magnitude
needs to be maintained within a predefined range. This is captured by specifying lower and upper
bounds on the voltage magnitude, i.e.

Vi ≤ |Vi| ≤ V̄i ∀i ∈ N (1.3)

It’s common practice to allow a 5% voltage deviation from the nominal value V ref
0 . Since the voltage

at the substation node is assumed to be fixed at the nominal value, V0 = V̄0 = V ref
0 .

The constraints (1.3), (1.2) define a feasible set of the optimal power flow problem :

V :=
{
V | V satisfies (1.3) and (1.2)

}
Besides the enforcement of the aforementioned constraints, the optimal power flow aims at minimising
an objective function. Typical objective functions include generation cost or total power loss. Here-
after, We assume there exists for each node i ∈ N , a real-valued function fi (si) defined on R which
represents the local objective of node i. Notice that those functions depend only on the power injection
si since the power loss and the generation cost can be expressed using only the power injection. Then
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Chapter 1. The OPF Problem on Single-Phase Distribution Networks

the total objective function is given by

C(s, s0) =
∑
i∈N

fi
(
Re{si}

)
Since the power injection can be expressed in terms of the voltage V . The cost function C is in reality
a function of the voltage V . For exemple, if we want to minimize the real power loss :

C(V ) =
∑
i∈N

Re{si} =
∑
i∈N

∑
j:i∼j

Re
{
Vi

(
V ∗

i − V ∗
j

)
y∗

ij

}

The OPF problem in the bus injection model can be formulated using the aforementioned constraints
and objective function.

BIM-OPF : min
V

C(V ) (1.4a)

s.t. V ∈ V (1.4b)

1.1.2 Convex Relaxation of The OPF Problem

Since the functions fi are usually assumed to be convex, the challenge in solving the OPF problem
comes from the non-convex quadratic equality constraints (1.1). In this subsection, we describe a
convex relaxation of the optimal power flow problem. To do so, we enlarge the feasible set of OPF to
a convex set and characterise it in terms of partial matrices. These characterisations lead naturally
to an SDP and SOCP relaxation of the OPF problem.

Mathematical Tools

Fix an undirected graph G = (N , E). A G-partial matrix XG (or a partial matrix if G is clear from
the context), is a collection of complex numbers such that

XG :=
(
[XG]ii ∈ C ∀i ∈ N , [XG]ij ∈ C ∀(i, j) ∈ E

)
One can treat a partial matrix XG as entries of an n×n matrix X whose entries Xij are unspecified if
(i, j) /∈ E . Given a partial matrix XG, we call an n×n matrix X, a completion of XG if Xii = [XG]ii,
i ∈ N and Xij = [XG]ij , (i, j) ∈ E , i.e. X agrees with XG on G.

Consider any n × n matrix X. Given k ≤ n nodes, let X(n1, . . . , nk) denote the k × k principal sub
matrix of X defined by:

[X(n1, . . . , nk)]ij := Xij ∀i, j ∈ {n1, . . . , nk}

In particular, any maximal clique q = (n1, . . . , nk) of G with k nodes defines a fully specified k × k
principal sub-matrix denoted by X(q). Figure (1.1) shows an example of a partial matrix and a prin-
cipal sub-matrix.

7
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1

2

4 5

3

1 2 3 4 5
1 X X X 7 7

2 X X 7 X X

3 X 7 X 7 7

4 7 X 7 X 7

5 7 X 7 7 X

1 3
1 X X

3 X X

Figure 1.1: Example of a partial matrix WG (center) associated with the graph G (left). The matrix on the
right is the principal submatrix WG (C) for the clique C := {1, 3}.

We can extend the notion of hermitian to partial matrices. We say a partial matrix WG is hermitian,
denoted by XG = X∗

G, if [XG]ii = [XG]∗ii, i ∈ N and [XG]ij = [XG]∗ji, ∀(i, j) ∈ E . The extension of the
notion of positive-semidefinite (psd) and rank-1 matrices will be explained later.

SDP Relaxation

Let’s Define a partial matrix WG such that

[WG]ij = ViV
∗

j i ∼ j or i = j

The constraints of the OPF problem (1.2), (1.3) can be rewritten in terms of the partial matrix WG

si ≤
∑

j:j∼i

(
[WG]ii − [WG]ij

)
y∗

ij ≤ s̄i ∀i ∈ N (1.5a)

V2
i ≤ [WG]ii ≤ V̄ 2

i ∀i ∈ N (1.5b)

It’s clear that any completion W of WG would also satisfy the constraints (1.5a)-(1.5b), since yij = 0,
if (i, j) /∈ E . Moreover if W = V V ∗, with V a voltage vector, then W must obviously be a rank-1
matrix but also positive-semidefinite. Indeed, by definition, a matrix W ∈ Cn×n is psd if ∀x ∈ Cn,

x∗Mx ≥ 0

if W = V V ∗, then x∗Mx = (V ∗x)∗ (V ∗x) ≥ 0.

The OPF problem can be rewritten in terms of a n × n Hermitian matrix W and its partial matrix
WG defined on G.

Problem P1 min
W

C(WG) (1.6a)

s.t. WG satisfy (1.5a) and (1.5b) (1.6b)

W � 0, rank W = 1 (1.6c)

Given V ∈ V, W = V V ∗ is feasible for P1. In the same way, if W is feasible for P1, then it has
a unique spectral decomposition W = V V ∗ with V ∈ V. Problem P1 is therefore equivalent to the
OPF problem. Unfortunately P1 is an rank-constrained SDP and then hard to solve (NP-hard). The
non-convex rank constraint can be relaxed to obtain the following SDP relaxation :

8



Chapter 1. The OPF Problem on Single-Phase Distribution Networks

Problem R1 min
W

C(WG) (1.7a)

s.t. WG satisfy (1.5a) and (1.5b) (1.7b)

W � 0 (1.7c)

This relaxation can be solved in polynomial time using for example an interior point method. Denote
W ?, an optimal solution of R1. If W ? is rank-1 then it also solves P1. We say the relaxation R1 is
exact with respect to P1 if there exists an optimal solution of R1 that satisfies the rank constraint in
P1. Notice that if the relaxation R1 has multiple solutions, we say that the relaxation is exact as long
as there exists at least one rank-1 solution of R1.

SOCP relaxation

Instead of working with a completion matrix W of WG, we would like to seek additional conditions on
the partial matrix that guarantee that it has a psd rank-1 completion W from which a voltage vector
V can be recovered.

To this end, we need to extend the notion of psd to partial matrices. Denote by W (K) a principal
sub-matrix of an n×n matrix W for a set K ⊆ {1, . . . , n} containing the rows and columns considered
in the sub-matrix is given by:

W (K) := PK W P T
K

where PK is a diagonal matrix where the rows and columns not contained in K have been removed.
For instance, K = {1, 2, 4},

WK = PK W P T
K =


1 0 0 0

0 1 0 0

0 0 0 1





1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16





1 0 0

0 1 0

0 0 0

0 0 1


=


1 2 4

5 6 8

13 14 16



Let’s show that a n × n matrix W is psd if and only of all its principal sub-matrices (including W

itself) are psd. By definition, W is a psd matrix if for all vector x ∈ Cn, 0 ≤ x∗Wx. Expressed in
terms of the partial matrix W (K), we get :

x∗Wx = x∗ P T
K W (K) PK x = (PK x)∗ W (K) (PK x) = y∗ W (K) y ≥ 0

This result holds for every y ∈ C|K| since y can always be expressed as PK x with x ∈ Cn and for every
partition K ⊆ {1, . . . , n}.

Thanks to this result, we extend the notion of psd to partial matrices. A partial matrix is psd if all
its "principal sub-matrices" that are fully specified are psd. Formally, WG is psd, denoted by WG � 0,
if WG(C) � 0 for all clique C of G. In the same way, we say that a partial matrix is rank-1 if XG(C)
is rank-1 for all maximal clique C of G. Notice that for a tree, the maximal cardinality of a clique is
two, otherwise there would be cycles in the graph. Therefore all the principal sub-matrices of a radial
network are 2× 2 matrices.

9
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We say that a partial matrix WG satisfies the cycle condition if, for every cycle in G,

∑
(i,j)∈ Cycle

∠[WG]ij = 0 (1.8)

The following theorem characterises when a definite matrix W is rank-1 in terms of its restriction on
G, i.e. the partial matrix WG (proof available in [SLC12]).

Theorem 1. Fix a graph G on n nodes. Given an n× n positive or negative semidefinite matrix W ,
the following are equivalent:

1. rank W = 1

2. rank WG(i, j) = 1 for all (i, j) ∈ E and the partial matrix WG satisfies the cycle condition (1.8).

The rank condition is a property for the whole matrix W . Theorem 1 characterises this condition in
terms of the partial matrix WG, defined on the graph G. This is important because WG is typically
much smaller than W and can be much more efficiently computed for large sparse networks. Note
also that for radial networks, the cycle condition always holds since there is no cycle in a tree.

As we now explain, theorem 1 allows us to solve simpler problems in terms of partial matrices. For
any e = (i, j) ∈ E , let’s define WG(e) as the 2× 2 principal sub-matrix of WG defined by the clique e.

Problem P2 min
WG

C(WG) (1.9a)

s.t. WG satisfy (1.5a), (1.5b) and (1.8) (1.9b)

WG(e) � 0, rank WG(e) = 1 ∀e ∈ E (1.9c)

Fortunately, the cycle condition always holds for radial networks. Nevertheless, the problem still re-
mains non-convex due to the rank constraint. If we relax it, we obtain the following relaxation :

Problem R2 min
WG

C(WG) (1.10a)

s.t. WG satisfy (1.5a) and (1.5b) (1.10b)

WG(e) � 0 ∀e ∈ E (1.10c)

Moreover ∀e = (i, j) ∈ E , and for an Hermitian matrix WG, the condition WG(e) � 0 can be reformu-
lated using the Sylvester’s Criterion for hermitian matrices :

0 �WG(e) =

[WG]ii [WG]ij
[WG]∗ij [WG]jj

 ⇐⇒

 [WG]ii ≥ 0, [WG]jj ≥ 0

[WG]ii [WG]jj ≥ |[WG]ij |2

This is a second-order cone constraint, and hence the problem (1.10) can be solved as an SOCP. If
an optimal solution of R2 satisfies that WG(e) is rank-1 for all e ∈ E , then the relaxation is said to be
exact with respect to P2.

10



Chapter 1. The OPF Problem on Single-Phase Distribution Networks

Equivalence of the two relaxations

The following corollary links the two formulations in terms of the optimal value of their objective
function [Low13].

Corollary 1.1. Let C∗, Csdp, Csocp be the optimal values of OPF, R1 (SDP relaxation) and R2 (SOCP
relaxation) respectively.

1. If G is radial, then C∗ ≥ Csdp = Csocp

2. If G has cycles, then C∗ ≥ Csdp ≥ Csocp

Indeed, for mesh networks, the SOCP relaxation requires the relaxation of both the cycle condition
and the rank constraint whereas the SDP relaxation only requires the relaxation of the rank con-
straint. Therefore, since the feasible set of the SOCP relaxation is larger than the feasible set of the
SDP relaxation, we get that Csdp ≥ Csocp.

In the special case of radial networks, the cycle condition always holds, and the two formulations
relaxe the same rank constraint. Hence, they are strictly equivalent for radial networks, and we obtain
that Csdp = Csocp.

Computational aspect

Although R1 (SDP) and R2 (SOCP) are convex and hence can be solved in polynomial time, SOCP
usually requires a much smaller computational effort than SDP for large sparse networks, like distri-
bution networks. Indeed, G is a subgraph of the complete graph defined on N , and hence the number
of complex variables is the smallest in R2 (|WG|) and the largest in R1 (|N |2).

Most importantly, corollary 1.1 suggests that, when G is a tree, we should always solve the SOCP
formulation. When G has cycles, there is a tradeoff between computational effort and exactness in
deciding between solving the SOCP or the SDP formulation.

1.1.3 How to recover the voltage vector

Consider the optimization problem P1 (1.6), so that any optimal solution W ? is a psd rank-1 matrix.
We can show that we can recover a voltage vector V ? from W ?. This voltage vector is unique and an
optimal solution of BIM-OPF(1.4).

It’s straightforward that for any V ∈ V, the point ψ(V ) = W = V V ∗ is feasible for (1.6). It remains
to prove that the map ψ is bijective, i.e injective and surjective.

Injective: Let’s define the two voltage vectors V and V ′. if ψ(V ) = ψ(V ′) then ViV
∗

j = V ′
i V

′∗
j for

i ∼ j. Hence, Vi = V ′
i implies Vj = V ′

j if i ∼ j. But since V0 = V ′
0 and the network is connected,

V = V ′.

Surjective: We can prove that for any feasible solution W of (1.6), there exists a V such that
Wij = ViV

∗
j for i = j and i ∼ j. Such V is given by :

11
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Vi =
√
Wii exp

i
∠V0 −

∑
(j,k)∈Pi

∠Wjk


 ∀i ∈ N (1.11)

where Pi denotes the unique path form the substation bus 0 to the bus i. It’s not difficult to
verify that such V satisfies ψ(V ) = W , which complete the proof.

If the relaxation R2 doesn’t yield an exact solution of BIM-OPF (1.6), i.e. the optimal solution W

of R2 is not a rank-1 matrix, the aforementioned recovering algorithm doesn’t apply. To partially
remedy this drawback, a solution could be to project the solution W onto its closest rank-1 matrix W̃
defined by

W̃ := U1: Σ11 V
∗

1:

where the matrix U and V are unitary matrices coming from the singular value decomposition of
W . Σ is a diagonal matrix containing the singular values in descending order. Then a voltage vector
V can be recovered from W̃ using formula (1.11). Although such solution is not guaranteed to be
feasible for (1.4), i.e. V /∈ V, we can employ a nonlinear solver with V as starting point to find a local
optimum of the BIM-OPF problem. However, it is clear that such approach cannot guarantee any
global optimality.

1.2 Branch Flow Model

The branch Flow Model (BFM) focuses on both nodal variables and branch variables such as the
current and the power on the branches. It has received far less attention than the Bus Injection Model,
and has been used mainly for the analysis of distribution networks because of its convenient recursive
structure. Nevertheless, it plays an important role in proving sufficient conditions for efficient recovery
of the optimal solution of the OPF problem from its convex relaxations. Moreover, the variables in
the BFM correspond to physical quantities such as the branch power and current, which can be more
convenient depending on the application.

1.2.1 Formulation of the OPF problem

The BFM of [FL12] adopts a directed connected graph G := (N , E) to represent a power network
where each node in N represents a bus and each edge e ∈ E represents a line connecting two buses.
The orientations of the edges are arbitrary.

As before, denote Vi as the complex voltage at node i ∈ N , si as the net power injection (generation
minus load) at node i ∈ N . For each edge e = (i, j) ∈ E , let zij be the complex impedance on the line
(i, j), let Iij be the complex current from node i to j, and Sij = Pij + iQij the sending-end complex
power from buses i to j, where Pij is the active power and Qij is the reactive power.

12
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The Branch flow model is defined by the following set of equations :

Vi − Vj = zijIij ∀(i, j) ∈ E (1.12a)

Sij = Vi I
∗
ij ∀(i, j) ∈ E (1.12b)

sj =
∑

k:j→k

Sjk −
∑

i:i→j

(
Sij − zij |Iij |2

)
∀j ∈ N (1.12c)

where (1.12a) describes Ohm’s Law, (1.12b) the branch power and (1.12c) the power balance. And
where zij |Iij |2 represents the line loss so that Sij − zij |Iij |2 is the receiving-end complex power at bus
j from i. The power injection sj must satisfy :

sj ≤ sj ≤ s̄j ∀j ∈ N (1.13)

where sj and s̄j are limits on the net power injection at node j. Note that we assume there is no limit
on the net power injection at the substation node for power balance, i.e. −s0 = s̄0 = +∞. We can
combine these constraints with the power balance constraints (1.12c) :

sj ≤
∑

k:j→k

Sjk −
∑

i:i→j

(
Sij − zij |Iij |2

)
≤ s̄j ∀j ∈ N (1.14)

Finally, the voltage magnitude must be contained within a predefined range :

Vj ≤ Vj ≤ V̄j ∀j ∈ N (1.15)

where Vj and V̄j are given. And as in the bus injection model, the voltage of the substation node
is fixed at a given value, i.e. V0 = V̄0 = V ref

0 . Denote x := (S, I, V ) ∈ C3|N |−2 the variables of the
Branch Flow Model.

The objective function C of the OPF problem can be expressed in terms of x. For example, if we want
to minimize the total power loss :

C(x) =
∑
j∈N

Re
{
sj
}

=
∑
j∈N

Re

 ∑
k:j→k

Sjk −
∑

i:i→j

(
Sij − zij |Iij |2

)
.
The OPF problem can be written in the Branch Flow model by :

BFM-OPF min
x

C(x) (1.16a)

s.t. x satisfies (1.12a), (1.12b), (1.14), and (1.15) (1.16b)

Since (1.12c) are quadratic equality constraints, the feasible set is generally non-convex. And the OPF
is as before a non-convex problem.

1.2.2 Convex Relaxation of the OPF Problem

An SOCP relaxation of (1.16) is developed in [FL12]. It consists of two steps. Firstly, we transform
(1.12a) and (1.12b) in order to remove the phase angles from the complex voltages V and currents I.

13
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Ohm’s law can be transformed into

Vj = Vi − zijIij ∀(i, j) ∈ E

VjV
∗

j =
(
Vi − zijIij

) (
Vi − zijIij

)∗ ∀(i, j) ∈ E

vj = vi − ViI
∗
ijz

∗
ij − zijIijV

∗
i + zijIijI

∗
ijz

∗
ij ∀(i, j) ∈ E

vj = vi − Sijz
∗
ij − zijS

∗
ij + zijlijz

∗
ij ∀(i, j) ∈ E

vj = vi − 2 Re
{
z∗

ijSij

}
+ zijlijz

∗
ij ∀(i, j) ∈ E (1.17)

where we define lij = Iij I
∗
ij , ∀(i, j) ∈ E , and vi = ViV

∗
i , ∀i ∈ N . The constraints (1.12b) can be

transformed into

Sij = Vi I
∗
ij ∀(i, j) ∈ E

SijS
∗
ij = Vi I

∗
ijIij V

∗
i ∀(i, j) ∈ E

|Sij |2 = vilij ∀(i, j) ∈ E (1.18)

The quadratic equalities (1.18) are still non-convex; but we can relax them to inequalities:

|Sij |2 ≤ vilij ∀(i, j) ∈ E (1.19)

Let x := (S, l, v) denote the new variables of the optimal power flow problem. From these develop-
ments, we can define two following relaxations (non-convex and convex):

Problem Rnc
BF M min

x
C(x) (1.20a)

s.t. x satisfies (1.14), (1.15), (1.17), and (1.18) (1.20b)

Problem RBF M min
x

C(x) (1.21a)

s.t. x satisfies (1.14), (1.15), (1.17), and (1.19) (1.21b)

Where (1.20) is non-convex and (1.21) is convex. Note that the relaxation (1.21) is an SOCP. Indeed,
the set of constraints (1.19) can be reformulated using a second-order cone ∀(i, j) ∈ E :∥∥∥∥∥∥∥∥∥∥

2Pij

2Qij

lij − vi

∥∥∥∥∥∥∥∥∥∥
2

≤ lij + vi ⇐⇒

√
4P 2

ij + 4Q2
ij +

(
lij − vi

)2 ≤ lij + vi

4P 2
ij + 4Q2

ij +
(
lij − vi

)2 ≤ (lij + vi
)2

|Sij |2 = P 2
ij +Q2

ij ≤ lijvi

where Pij and Qij are the active and reactive power respectively along the line (i, j) ∈ E . Thus the
relaxation RBF M problem can be efficiently computed.

14
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1.2.3 Exactness of the relaxation

Whether the solution of the SOCP relaxation (1.21) yields an optimal solution for BFM-OPF depends
on two factors :

• Whether the solution of (1.21) satisfies the equality constraint (1.18).

• Whether the phase angles of V and I can be recovered from such a solution.

Only the second issue is discussed here. The first issue will be investigated in the next section.

Angle Recovering Algorithm

The condition under which the recovery of the phase angles is described in [FL12], theorem 2. Here,
we briefly introduce the recovering algorithm.

For a vector θ ∈ [−π, π)n, let’s define the mapping fθ (S, `, v) = (S, I, V ) where :

Vi := √vi exp(iθi) for i ∈ N

Iij :=
√
`ij exp

(
i
(
θi − ∠Sij

))
for (i, j) ∈ E

θi can be interpreted as the phase of the voltage at node i ∈ N . The goal is then to find θ such that
if x := (S, l, v) is optimal for (1.20), fθ (x) is optimal for the OPF problem. Whether such θ exists
depends on the topology of the network. Let’s define β(x) ∈ R|E| by

βij(x) := ∠
(
vi − z∗

ijSij

)
∀(i, j) ∈ E

which is the phase angle difference across each line i → j ∈ E . Then the system simply consists of
finding a vector θ such that θi − θj = βij(x). Let’s define the |N | × |E| incidence matrix C of the
graph G :

Cie :=


1 if edge e ∈ E leaves node i ∈ N

−1 if edge e ∈ E enters node i ∈ N

0 Otherwise

The first row of C correspond the the substation node. Let’s define the reduced matrix B obtained
by removing the first row of C and taking its transpose. The condition under which we can recover
the phase angles is then

∃ θ that solves Bθ = β(x) mod 2π (1.22)

If such solution exist, it’s unique in [−π, π)n. Moreover the condition for the existence of a solution
to (1.22) has a simple interpretation : The voltage angle differences βij(x) must sum to zero (mode
2π) around any cycle (see [FL12] for further explanations). In the special case of radial networks, the
cycle condition always holds. Hence the recovering of the phase angles can be computed by solving
the system (1.22).

15



Chapter 1. The OPF Problem on Single-Phase Distribution Networks

1.3 Exactness and Equivalence of the Two Models

For radial networks, it has been shown that one should always solve the second-order cone relaxation
in the bus injection model and in the branch flow model. In this section, we show there exists a
bijection between the feasible set of the OPF in the bus injection model and in the branch flow model,
establishing the equivalence of theses models and their second-order cone relaxations. Then we briefly
discuss the conditions under which the SOCP relaxations are exact.

1.3.1 Equivalence of the SOCP relaxations

Recall that the two SOCP relaxations of the optimal power flow problem in the bus injection model
(1.23) and in the branch flow model (1.24) are given by:

BIM-SOCP

min C(WG) (1.23a)

over WG

s.t. si =
∑

j:j∼i

(
[WG]ii − [WG]ij

)
y∗

ij ∀j ∈ N (1.23b)

sj ≤ sj ≤ s̄j ∀j ∈ N (1.23c)

Vj ≤ [WG]jj ≤ V̄j ∀j ∈ N (1.23d)

[WG]ii [WG]jj ≥ |[WG]ij |2 ∀(i, j) ∈ E (1.23e)

BFM-SOCP

min C(S, l, v, s) (1.24a)

over S, l, v, s

s.t. vj = vi − 2 Re
{
z∗

ijSij

}
+ zijlijz

∗
ij ∀(i, j) ∈ E (1.24b)

sj +
∑

i:i→j

(
Sij − zij |Iij |2

)
=

∑
k:j→k

Sjk ∀j ∈ N (1.24c)

Vj ≤ Vj ≤ V̄j ∀j ∈ N (1.24d)

sj ≤ sj ≤ s̄j ∀j ∈ N (1.24e)

|Sij |2 ≤ vilij ∀(i, j) ∈ E (1.24f)

For a hermitian partial matrix WG defined on the graph G, define the vector x := (S, l, v) ∈ R3|N |−2

such that x = (S, l, v) =: g (WG). The mapping function g is given for i ∈ N and for (i, j) ∈ E by

g (WG) :=



vi := ViV
∗

i = [WG]ii
Sij := ViI

∗
ij = Vi

(
Vi − Vj

)∗
y∗

ij = y∗
ij

(
[WG]ii − [WG]ij

)
lij := IijI

∗
ij = yij

(
Vi − Vj

) (
Vi − Vj

)∗
y∗

ij

= |yij |2
(
[WG]ii − [WG]ij − [WG]ji + [WG]jj

)
And the inverse mapping g−1 from R3|N |−2 to the set of Hermitian G-partial matrix is defined such
that g−1(x) := WG.
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g−1(x) :=

 [WG]ii := vi

[WG]ij := vi − z∗
ijSij = [WG]∗ji

Using this mapping function g, we can show that the constraints in one model can be expressed in
terms of the variables in the other model. By doing so, we end up with the constraints of the other
model, and which proves that the feasible set of two formulations are equivalent.

From the definition of (S, `, v) in terms of the G-partial matrix WG, we can easily verified that:

vj = vi − 2 Re
{
z∗

ijSij

}
+ |zij |2`ij ∀(i, j) ∈ E

The power flow constraints can be transformed for i ∈ N :

si =
∑

j:i∼j

(
[WG]ii − [WG]ij

)
y∗

ij

=
∑

j:i→j

(
[WG]ii − [WG]ij

)
y∗

ij +
∑

k:k→i

(
[WG]ii − [WG]ik

)
y∗

ik

=
∑

j:i→j

Sij +
∑

k:k→i

(
|zki|2lki −

(
[WG]kk − [WG]ki

))
y∗

ki

=
∑

j:i→j

Sij +
∑

k:k→i

(zkilki − Ski)

=
∑

j:i→j

Sij −
∑

k:k→i

(Ski − zkilki)

which is exactly the power balance constraint in the branch flow model. The voltage constraints can
also be transformed for i ∈ N as

V2
i ≤ [WG]ii ≤ V̄ 2

i ⇐⇒ vi ≤ vi ≤ v̄i ∀i ∈ N

where vi = V2
i and v̄i = V̄ 2

i . The rank-constraints can be reformulated for (i, j) ∈ E as

rank
(
WG (i, j)

)
= 1

⇔ [WG]jj = [WG]ij [WG]ji

[WG]ii

⇔ [WG]jj − [WG]ij − [WG]ji + [WG]ii =
(
[WG]ii − [WG]ij

) (
[WG]ii − [WG]ji

)
[WG]ii

⇔ lij = |Sij |2

vi

And finally, in the same way, the constraints regarding the positive semidefinitness of the G-partial
matrix WG can be reformulated into

WG

(
{i, j}

)
� 0 ⇐⇒ `ij ≥

|Sij |2

vi

In conclusion, by using the mapping function g, we saw that each constraint in one model can be refor-
mulated in terms of the variables of the other. Moreover, those constraints are exactly the constraints
considered in the other model, and hence proves the equivalence between the bus injection model and
the branch flow model as well as the equivalence between their second-order cone relaxations.
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1.3.2 Exactness of the SOCP relaxations for radial networks

Since the SOCP relaxations in the branch flow model and in the bus injection model are equivalent, the
conditions under which they are exact are also equivalent but expressed in terms of different variables.

Branch Flow Model We saw that whether the solution of the SOCP relaxation in the Branch
Flow Model (1.21) yields an optimal solution for BFM-OPF depends on two factors :

• Whether the solution of (1.21) satisfies the equality constraint (1.18).

• Whether the phase angles of V and I can be recovered from such a solution.

We already proved that in the special case of radial networks, the angle recovering condition always
holds and hence the exactness of the SOCP relaxation depends only on whether the solution satisfies
the equality constraint :

lij = |Sij |2

vi
(i, j) ∈ E

Bus Injection Model In the Bus Injection Model, The exactness of the SOCP relaxation for the
BIM-OPF depends on whether the G-partial matrix WG is rank-1 or not.

Up to date sufficient conditions that have been derived for the exactness of these SOCP relaxations
doesn’t hold in practice [ZT13]. For instance some conditions require some/all buses to be able to draw
infinite power, and the condition in [LZT12] requires a fixed voltage at every bus. A more elaborated
condition based on the branch flow model has been described in [GLTL12] to prove the exactness
of the SOCP relaxations. This condition can be checked a priori (prior solving the relaxation), and
generally holds for real networks, even with high penetration of distributed generation. Moreover,
they showed that the feasible set of OPF problem can be slightly modified to force the solution to be
exact. Surprisingly, with this modification, only feasible points that are "close" to the voltage upper
and lower bounds are eliminated.

1.4 Conclusion

This first chapter gave a short review of recent advances in convexification methods for solving the
Optimal power flow problem, which were developed in the last few years. These methods proved to
be very promising, since they can be computed very efficiently. However, there are still theoretical
issues (e.g. conditions for exactness).
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2 | The OPF Problem on Three-Phase
Distribution Networks

2.1 OPF Formulation

In this first section, we briefly introduce the OPF formulation for an unbalanced multiphase distribu-
tion network. The formulation is a generalisation of the Branch Flow Model described in section 1.2,
and is based on [GL14] and [PL15]. We choose to work with the branch flow model because of its
numerical stability. BIM-SDP is indeed ill-conditioned due to subtractions of voltages that are close
in value. Using alternating variables, BFM avoids these subtractions and is therefore numerically
more stable. Moreover, the variables in the BFM correspond to physical quantities such as the branch
power and current, which are more convenient for interpretation.

2.1.1 Notations

A distribution network is modelled as a directed graph G := (N , E), where N := {0, 1, . . . , n} repre-
sents the set of buses and E the set of lines connecting the buses. Since G represents a distribution
network, we expect him to be radial. We index the root of the tree by 0 and denote it as the substa-
tion node, which draws power from the transmission network to the distribution network for power
balance. Let N+ denote the set of non-substation buses.

Each bus i has a unique ancestor Ai and a set of children buses denoted by Ci. For convenience, we
adopt the following graph orientation : Every line points towards the root. Hence, each line i ∈ E
connects the bus i to its unique ancestor Ai. Since the line set E := {1, . . . , n} = N+, we will use N+

as the set of lines in the sequel. Denote by a, b, c the three phases of the network. Each bus i ∈ N has
a set of phases Φi ⊆ {a, b, c}. the set of phases of bus i is a subset of the phases of its ancestor and a
superset for the phases of its children j ∈ Ci, i.e. Φi ⊆ ΦAi , Φj ⊆ Φi ∀j ∈ Ci.

For each bus i ∈ N and each phase φ ∈ Φi, denote V φ
i the complex voltage and sφ

i = pφ
i + iqφ

i the com-
plex power injection (generation minus load). And denote the vectors Vi :=

(
V φ

i , ∀φ ∈ Φi

)
∈ C|Φi|×1,

and si :=
(
sφ

i , ∀φ ∈ Φi

)
∈ C|Φi|×1.

For each line i ∈ N+ connecting bus i and its ancestor Ai, the set of phases is ΦAi ∩ Φi = Φi (since
Φi ⊆ ΦAi). Denote for each phase φ ∈ Φi, Iφ

i ∈ C the complex branch current form bus i to its
ancestor Ai, and Ii :=

(
Iφ

i , ∀φ ∈ Φi

)
∈ C|Φi|×1. And let’s define the sending-end complex power

Si := ViI
∗
i ∈ C|Φi|×|Φi| from node i to its ancestor Ai.
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Finally, let’s define some variables useful for the formulation of the OPF problem in the branch flow
model : vi := ViV

∗
i ∈ C|Φi|×|Φi|, ∀i ∈ N , `i := IiI

∗
i ∈ C|Φi|×|Φi|, ∀i ∈ N+. A variable without a

subscript denotes the set of variables with appropriate components :

v := (vi, i ∈ N ) s := (si, i ∈ N )
` := (`i, i ∈ N+) S := (Si, i ∈ N+)

The notations are summarized on figure (2.1). Note that the impedance zij for each line (i, j) ∈ E
is a symmetric |Φi ∩ Φj | × |Φi ∩ Φj | complex matrix that consists of self-impedances on the diagonal
and mutual impedances (between phases) on the off-diagonals. Note that for balanced system, the
impedance matrix is diagonal. Hence the voltages and currents are independent form each each other,
i.e. they have no cross-terms and can be treated as three de-coupled single phase networks.

A

B

C

A

B

(j) (i)

Figure 2.1: Notations

2.1.2 Objective Function

The optimal power flow problem aims at minimizing a certain objective function. Typical objective
functions iclude generation cost or total power loss. Moreover the solution must satisfy power flow
equations and operational constraints. We assume there exists for each node i ∈ N and each phase
φ ∈ Φi, a real-valued function fφ

i

(
sφ

i

)
defined on R which represents the local objective of node i.

Then the total objective function is given by

f(s) :=
∑
i∈N

fi(si) :=
∑
i∈N

∑
φ∈Φi

fφ
i (sφ

i ). (2.1)

If we want to minimize the total line loss of real power, the objective function for each node i and for
each phase φ ∈ Φi is

fφ
i (sφ

i ) = pφ
i

If we want to minimize the generation cost, the objective function could be

fφ
i (sφ

i ) = αφ
i

2 (pφ
i )2 + βφ

i p
φ
i ,

where αφ
i , β

φ
i > 0 are fixed parameters that depend on the characteristic of the generator located at

node i.
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2.1.3 Constraints

For each bus i ∈ N , there are two technical constraints on each phase φ ∈ Φi. The first constraint
concerns the complex power injection sφ

i , and can be captured by some feasible power injection set
Iφ

i , such that :
sφ

i ∈ I
φ
i for φ ∈ Φi and i ∈ N (2.2)

The feasible power injection is determined by the load and the generation attached at each phase
φ ∈ Φi. A common feasible set is when real power can vary within [pi, p̄i] and reactive power can vary
within [qi, q̄i], the injection region Iφ

i is

Iφ
i = {p+ iq ∈ C | p ∈ [p

i
, pi], q ∈ [q

i
, qi]} ⊆ C (2.3)

Since the substation node is responsible for drawing power from the transmission network to the
distribution network for power balance, we assume its power injection s0 to be unconstrained, thus
−p0 = −q0 = p̄0 = q̄0 = +∞.

The second technical constraint concerns the voltage magnitude. It needs to be maintained within a
fixed region. Since the diagonal of vi is the voltage magnitude square for each phase φ ∈ Φi, we can
formulate the constraint as :

vφ
i ≤ v

φφ
i ≤ v

φ
i i ∈ N (2.4)

where vφφ
i denotes the φth diagonal element of vi. The voltage magnitude is typically allowed to devi-

ate by a 5−10% from the nominal value of the network for each phase φ ∈ Φi. The voltage magnitude
of the substation node is assumed to be fixed, i.e. v0 = v̄0.

Besides operational constraints, power flows are characterised by two sets of equations :

• Ohm’s law :
Vi − Pi

(
VAi

)
= ziIi (2.5)

• Power Balance :

diag

∑
j∈Ci

Pi
(
Sj − zjlj

)+ si = diag (Si) (2.6)

where the operator Pi(x) defines the projection of x on the set of phases Φi. For example, Pi
(
vAi

)
considers only the entries of vAi for the phases present at node i and Ai. Pi(Sj − zj`j) denotes the
lifting of Sj − zj`j to the phases Φi and filling the missing phases with zero, e.g. if ΦAi = {a, b, c},
Φi = {a, b} and Φj = {a}, then

Pi(vAi) :=

vaa
Ai

vab
Ai

vba
Ai

vbb
Ai

 Pi(Sj − zj`j) :=

Saa
j − zaa

j `aa
j 0

0 0


The term diag

(
Sj
)

represents the sending-end power on the branch connecting i to its ancestor Ai. if
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we multiply both sides of (2.5) by their hermitian, we obtain :

Pi
(
VAi

)
= Vi − ziIi

⇒ Pi
(
VAi

)
Pi

(
V ∗

Ai

)
= (Vi − ziIi) (Vi − ziIi)∗

⇒ Pi
(
vAi

)
= vi − ziIiV

∗
i − ViI

∗
i z

∗
i + ziIiI

∗
i z

∗
i

⇒ Pi
(
vAi

)
= vi − (ziS

∗
i + Siz

∗
i ) + ziliz

∗
i (2.7)

2.1.4 Formulation

Given a radial network G, the impedance of each line i ∈ N+ and the nominal voltage, the branch
flow model for an unbalanced network is defined by the following set of equations :

Pi(vAi) = vi −
(
ziS

∗
i + Siz

∗
i

)
+ zi`iz

∗
i i ∈ N+ (2.8a)

si + diag

∑
j∈Ci

Pi
(
Sj − zjlj

) = diag (Si) i ∈ N (2.8b)

 vi Si

SH
i `i

 � 0 i ∈ N (2.8c)

rank

 vi Si

S∗
i `i

 = 1 i ∈ N (2.8d)

The rank constraint (2.8d) and the positive semidefinite constraint (2.8c) come from the definition of
the variables (v, `, S)  vi Si

S∗
i `i

 =

Vi

Ii

Vi

Ii

∗

(2.9)

This matrix must be rank-1 and positive semidefinite in order to recover the voltage vectors Vi and
the current vectors Ii. Because of the rank constraint, the problem is non-convex; by relaxing it, we
obtain the following SDP relaxation:

R-OPF :

min
∑
i∈N

∑
φ∈Φi

fφ
i (sφ

i ) (2.10a)

over v, s, S, `

s.t. Pi(vAi) = vi −
(
ziS

∗
i + Siz

∗
i

)
+ zi`iz

∗
i i ∈ N+ (2.10b)

si + diag

∑
j∈Ci

Pi
(
Sj − zjlj

) = diag (Si) i ∈ N (2.10c)

 vi Si

S∗
i `i

 � 0 i ∈ N (2.10d)

sφ
i ∈ I

φ
i φ ∈ Φi, i ∈ N (2.10e)

vφ
i ≤ v

φφ
i ≤ v

φ
i φ ∈ Φi, i ∈ N (2.10f)
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2.2 How to recover the original variables

Given a vector (v, `, S) that satisfies (2.8), it is proved in [GL14] that the bus voltages Vi and branch
currents Ii can be uniquely determined if the network is a tree.

Lemma 1. [GL14] Let vi ∈ H|Φi|×|Φi| for i ∈ N . Le Sij ∈ C|Φi|×|Φi| and `ij ∈ H|Φi|×|Φi| for i→ j. If
(v, S, `) is such that :

• v0 = V ref
0 V ref ∗

0 for some nominal voltage V ref
0 ∈ C|Φ0|.

• diag (vi) is nonzero component-wise for i ∈ N .

• (v, S, `) satisfies Ohm’s Law (2.7)

•

 vi Si

S∗
i `i

 � 0 and is rank-1 ∀i ∈ N

Then the algorithm (1) computes the unique (V, I) that satisfies V0 = V ref
0 , vi = ViV

∗
i ∀i ∈ N , `i =

IiI
∗
i , and Si = ViI

∗
i ∀i ∈ N+.

Algorithm 1: Recover (V, I) from (v, S, `)
input : (v, S, `) that satisfies the conditions in Lemma (1)
output: (V, I)

1 V0 ←− V ref
0

2 Nvisit ←− {0}
3 while Nvisit 6= N do
4 find i→ j such that i ∈ Nvisit and j /∈ Nvisit

5 compute

Iij ←
1

Tr(vi)
S∗

ijVi

Vj ← Vi − zijIij

Nvisit ← Nvisit ∪ {j}

6 end

2.3 Conclusion

This second chapter described an SOCP relaxation of the optimal power flow problem in the special
case of multiphase radial networks. Even if this formulation is very similar to the case of single-
phase networks, there are no theoretical works proving the exactness of the relaxation. However, the
relaxation is generally exact for real distribution networks as shown in section (6.4)
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Distributed Algorithm
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3 | Alternating Direction Method of
Multipliers

The alternating direction method of multipliers (ADMM) is a convex optimization algorithm dating
back to the early 80’s [GR75, GM76]. The method has experienced a revival in recent years due to
its applicability to optimization problems arising from "big data" and image processing applications,
and its relative ease with which it may be implemented in parallel and distributed computational
environnements. The alternating direction method of multipliers takes the form of a decomposition-
coordination procedure, in which the solutions to small local sub-problems are coordinated to find a
solution to a large global problem. The method turns out to be equivalent or at least closely related to
many other algorithms such as the Douglas-Rachford splitting method, proximal methods, Dykstra’s
alternating projections method, etc. This chapter aims at providing an accessible introduction to this
method, including analytical results and two short applications (based on [BPC+11]).

3.1 Precursors

In this section, we briefly review the two optimization methods that are precursors to ADMM. Al-
though those methods will not be used in the sequel, it provides some useful backgrounds and moti-
vations.

3.1.1 Dual Ascent

Let’s consider a simple equality-constrained convex optimization problem

min
x∈Rn

f(x) s.t. Ax = b (3.1)

where A ∈ Rm×n and f(x) : Rn → R is convex. The Lagrangian function of this problem is

L(x, λ) = f(x) + 〈λ,Ax− b〉

where λ ∈ Rm is the dual variable. The dual function is therefore

g(λ) = inf
x
L(x, λ)

And the dual problem consists in maximizing this dual function. In the dual ascent method, we solve
the dual problem using gradient ascent. Assuming that g is differentiable, the dual ascent method
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consists of iterating the updates

xk+1 = argmin
x

L(x, λk)

λk+1 = λk + αk

(
Axk+1 − b

)
where {αk} is a sequence of positive scalar paremeters bounded away from 0. The main benefit of
the dual ascent method is that it can lead to a decentralized algorithm in some cases. For example,
suppose the objective function f is separable, i.e.

f(x) =
N∑

i=1
fi(xi)

where x = (x1, . . . , xN ) and the variables xi ∈ Rni are subvectors of x. Partitioning the matrix A such
that

Ax =
N∑

i=1
Aixi

yields a new formulation of the Lagrangian function

L(x, λ) =
N∑

i=1
Li(xi, λ) =

N∑
i=1

fi(xi) + 〈λ,Aixi − b〉

Meaning that the x-minimization can be split into N separable subproblems that can be solved in
parallel. Explicitly, the algorithm is

xk+1
i = argmin

xi

Li(xi, λ
k)

λk+1 = λk + αk

(
Axk+1 − b

)
In this case, we refer to the dual ascent method as the dual decomposition.

3.1.2 Method of Multipliers

Augmented Lagrangian methods were developed to bring robustness to the dual ascent method. In
particular, to yield convergence without assumptions such as strict convexity of the objective function.
The augmented Lagrangian for (3.1) is

Lρ(x, λ) = f(x) + 〈λ,Ax− b〉+ ρ

2‖Ax− b‖
2
2

where ρ > 0 is called the penalty parameter. The augmented Lagrangian can be viewed as a classic
Lagrangian associated with the problem

min
x∈Rn

f(x) + ρ

2‖Ax− b‖
2
2 s.t. Ax = b

which is clearly equivalent to the original problem (3.1). Applying the dual ascent method as before
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yields the following algorithm

xk+1 = argmin
xi

Lρ(x, λk)

λk+1 = λk + ρ
(
Axk+1 − b

)
which is known as the method of multipliers. By using ρ as step-size in the dual update, we ensure
the dual feasibility of the iterates

{
xk, λk

}
. The method of multipliers converges under far more

general conditions than the dual ascent, including cases when f is not strictly convex. The drawback
is that even if the objective function f is separable, the augmented Lagrangian is not separable. This
means that the basic method of multipliers cannot be used for decomposition.

3.2 Alternating Direction Method of Multipliers

The ADMM algorithm combines the decomposition of dual ascent type algorithms and the good
convergence properties of the method of multipliers. It intends to solve the following problem

min f(x) + g(z) s.t. Ax+Bz = c (3.2)

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and f and g are convex functions
on Rn and Rm, respectively. We let f and g take not only values in R but also the value +∞, so
that constraints may be "embedded" in f and g. As in the method of multipliers, the augmented
Lagrangian of (3.2) is

Lρ(x, z, λ) = f(x) + g(z) + 〈λ,Ax+Bz − c〉+ ρ

2‖Ax+Bz − c‖22 (3.3)

And the method of multipliers for (3.2) is(
xk+1, zk+1

)
= argmin

x, z
Lρ(x, z, λk) (3.4)

λk+1 = λk + ρ
(
Axk+1 +Bzk+1 − c

)
(3.5)

Here, the augmented Lagrangian is jointly minimized with respect to the primal variables. On the
other hand, the ADMM method updates in an alternating way the primal variables. One can view
the ADMM as an approximate version of the classical augmented Lagrangian method (3.4) in which
a single pass of "Gauss-Seidel" block minimization substitues the full minimization of the augmented
Lagrangian. ADMM method consists of the iterations

xk+1 = argmin
x

Lρ(x, zk, λk) (3.6)

zk+1 = argmin
z

Lρ(xk+1, z, λk) (3.7)

λk+1 = λk + ρ
(
Axk+1 +Bzk+1 − c

)
(3.8)

As the method of multipliers, the dual variable update uses a step-size equal to the penalty parameter
ρ. Equations (3.6) and (3.7) can be reformulated by combining the linear and the quadratic term in
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the augmented Lagrangian function and scaling the dual variable. We have

λT r + (ρ/2)‖r‖22 = λT r + (ρ/2)rT r = (ρ/2)
(
rT r + (2/ρ)λT r + (1/ρ2)λTλ

)
− (1/2ρ)λTλ

= (ρ/2)
∥∥r + (1/ρ)λ

∥∥2
2 − (1/2ρ)‖λ‖22

= ρ

2‖r + u‖22 −
ρ

2‖u‖
2
2

where u = (λ/ρ), the scaled dual variable. If we define r as the primal residual Ax + Bz − c, the
ADMM method can be expressed as :

xk+1 = argmin
x

f(x) + ρ

2
∥∥∥Ax+Bzk − c+ uk

∥∥∥2

2

zk+1 = argmin
z

g(z) + ρ

2
∥∥∥Axk+1 +Bz − c+ uk

∥∥∥2

2

uk+1 = uk +Axk+1 +Bzk+1 − c

The two formulations are equivalent but the formulas in the scaled version are generally shorter than
the unscaled version.

3.3 Convergence Results

In this section, we briefly introduce the convergence results of the ADMM method. See [BPC+11,
EY12, NLR+15], for a more comprehensive discussion. Compared to the dual decomposition, ADMM
is guaranteed to converge to an optimal solution under less restrictive conditions.

Assumption 1 The function f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} are closed, proper,
and convex, i.e. the epigraphs of f and g are closed non-empty convex sets.

Assumption 2 The unaugmented Lagrangian L0 has a saddle point, i.e there exist (x?, z?, λ?)
such that

L0(x?, z?, λ) ≤ L0(x?, z?, λ?) ≤ L0(x, z, λ?)

for all x, z, λ.

Proposition [BPC+11] Under assumptions 1 and 2, the ADMM iterates satisfy the following :

• Residual convergence limk→∞r
k = 0, i.e. the iterates approach feasibility.

• Objective convergence limk→∞f(xk) + g(zk) = p?, i.e. the objective function approaches the
optimal value.

• Dual variables convergence limk→∞λ
k = λ?, where λ? is the dual optimal point.

Where rk = Axk +Bzk − c. Note that xk and zk don’t need to converge to optimal values, although
such results can be shown under additional assumptions.

30



Chapter 3. ADMM Algorithm

3.3.1 Optimality Condition and Stopping Criterion

The optimality conditions for the ADMM problem (3.2) are primal and dual feasbilities

Ax? +Bz? − c = 0 (3.9)

0 ∈ ∂f(x?) +ATλ? (3.10)

0 ∈ ∂g(z?) +BTλ? (3.11)

where ∂ denote the sudbifferential operator. Since zk+1 minimize Lρ(xk+1, z, λk) then

0 ∈ ∂g(zk+1) +BTλk + ρBT
(
Axk+1 +Bzk+1 − c

)
= ∂g(zk+1) +BT

(
λk + ρrk+1

)
= ∂g(zk+1) +BTλk+1

Meaning that zk+1 and λk+1 always satisfy (3.11) when the penalty parameter ρ is chosen as step size.
Since xk+1 minimizes Lρ(x, zk, λk), we have that

0 ∈ ∂f(xk+1) +ATλk + ρAT
(
Axk+1 +Bzk − c

)
= ∂f(xk+1) +AT

(
λk + ρrk+1 + ρB(zk − zk+1)

)
= ∂f(xk+1) +ATλk+1 + ρATB(zk − zk+1)

or equivalently,
ρATB(zk+1 − zk) ∈ ∂f(xk+1) +ATλk+1

The quantity
sk+1 = ρATB(zk+1 − zk)

can be viewed as a residual for the dual feasibility. We will refer to sk+1 as the dual residual and
rk+1 as the primal residual at iteration k + 1. Since 3.11 always holds, the optimal conditions sum
up to the convergence of the primal and dual residuals rk and sk, respectively. It’s proven in [BPC+11]
that those two residuals converge to zero as ADMM proceeds. This result suggests that a reasonable
termination criterion should have small primal and dual residuals, i.e.∥∥∥rk

∥∥∥
2
≤ εprimal

∥∥∥sk
∥∥∥

2
≤ εdual

where εprimal > 0 and εdual > 0 are the feasibility tolerances for the primal and dual feasibility condi-
tions.

Rate of Convergence As far as the rate of convergence is concerned, only a linear rate of con-
vergence was recently established in the literature [NLR+15, GOSB14], though this rate does not
require strict convexity. Therefore, compared to second-order methods that are able to achieve a high
accuracy via expensive iterations, ADMM relies on low-complex iterations and can achieve a modest
accuracy in tens of iterations. Nevertheless, inspired by Nesterov’s scheme for accelerating gradient
methods [Nes], great efforts have been devoted to accelerating ADMM and attaining high accuracy in
a reasonable number of iterations [GOSB14].
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3.4 Applications

The problems addressed in this section illustrate why ADMM is a natural fit for consensus problems
as well as common optimization problems.

3.4.1 l1-regularized linear regression

The first application is the l1-regularized linear regression, also called Lasso. This involves solving

min
x∈Rn

1
2‖Ax− b‖

2
2 + λ‖x‖1

with λ > 0, the regularization parameter. In the ADMM form, the lasso problem can be written as :

min
x,z∈Rn

1
2‖Ax− b‖

2
2 + λ‖z‖1 s.t. x− z = 0

The ADMM algorithm (scaled version) becomes

xk+1 := argmin
x∈Rn

1
2‖Ax− b‖

2
2 + ρ

2
∥∥∥x− zk + uk

∥∥∥2

2
(3.12)

zk+1 := argmin
z∈Rn

λ‖z‖1 + ρ

2
∥∥∥xk+1 − z + uk

∥∥∥2

2
(3.13)

uk+1 := uk + xk+1 − zk+1 (3.14)

Fortunately, the primal updates (3.12) and (3.13) enjoy a closed-form solution

xk+1 :=
(
ATA+ ρI

)−1
(
AT b+ ρ

(
zk − uk

))
(3.15)

zk+1 := Sλ/ρ

(
xk+1 + uk

)
(3.16)

uk+1 := uk + xk+1 − zk+1 (3.17)

where Sk(a) is a shrinkage operator : Sk(a) = a
(
1− k

|a|

)+
. Note that we can cache an initial

factorization of (3.15) to make subsequent iterations much cheaper.

3.4.2 Consensus

Let’s consider a simple consensus problem that could involve the following optimization problem

min
x∈Rn

f(x) =
N∑

i=1
fi(x) (3.18)

where fi : Rn → R ∪ {+∞} are convex. Each of the objective function fi can encode constraints by
assigning fi(x) = +∞ when x is unfeasible. The problem can be rewritten with local variables xi ∈ Rn

and a global variable z ∈ Rn :

min
xi,z∈Rn

N∑
i=1

fi(xi) s.t. xi − z = 0 ∀i = 1 . . . N (3.19)
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The ADMM algorithm can be written as

xk+1
i := argmin

xi∈Rn
fi(xi) + ykT

i (xi − zk) + ρ

2
∥∥∥xi − zk

∥∥∥2

2
(3.20)

zk+1 := argmin
z∈Rn

ykT
i (xk+1

i − z) + ρ

2
∥∥∥xk+1

i − z
∥∥∥2

2
= 1
N

N∑
i=1

(
xk+1

i + 1
ρ
yk

i

)
(3.21)

yk+1
i := yk

i + ρ
(
xk+1

i − zk+1
i

)
(3.22)

This formulation can be simplified. We know from (3.21) and (3.22) that

zk+1 = x̄k+1 + 1
ρ
ȳk

ȳk+1 = ȳk + ρ
(
x̄k+1 − zk+1

)
Inserting the first equation into the second one gives ȳk+1 = 0 after the first iteration. Since then
zk+1 = x̄k, ADMM can be written as

xk+1
i := argmin

xi∈Rn
fi(xi) + ykT

i (xi − x̄k) + ρ

2
∥∥∥xi − x̄k

∥∥∥2

2
(3.23)

yk+1
i := yk

i + ρ
(
xk+1

i − x̄k+1
)

(3.24)

We can view ADMM as a method for solving problems in which the objective and constraints are
distributed across multiple processors. And each processor handles only its own local variables. The
primal local variables are updated according to their own objective function plus a linear and quadratic
term in such a way that the variables converge to a common value, which is the solution of the full
problem. If we look at the primal residual and its squared norm at iterate k

rk =
N∑

i=1
(xk

i − zk) =
N∑

i=1
(xk

i − x̄k)

∥∥∥rk
∥∥∥2

2
=

N∑
i=1

∥∥∥xk
i − x̄k

∥∥∥2

2

We see that this norm corresponds to N times the standard deviation of the primal variables xi, a
natural measure of (lack of) consensus.
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4 | A Distributed Algorithm for the
Optimal Power Flow Problem

In this chapter, we firstly design an ADMM based algorithm for a broad class of optimization problems,
of which the relaxation of the OPF problem is a special case. We develop then the algorithm for the
special case of the OPF problem. This approach is inspired from [PL15].

4.1 Distributed Algorithm

Let’s consider the following optimization problem :

min
∑
i∈N

fi(xi) (4.1a)

over {xi | i ∈ N} (4.1b)

s.t.
∑

j∈Ni

Aijxj = 0 for i ∈ N (4.1c)

xi ∈ ∩Ri
r=0Kir for i ∈ N , (4.1d)

where xi is a complex vector for each i ∈ N , the objectif function is composed of the sum of convex
functions fi(xi) and the sets Kir are convex non-empty sets. Aij are matrices linking the variables
together, with appropriate dimensions (j ∈ Ni, i ∈ N ). A broad class of graphical optimization prob-
lems can be formulated as (4.1). Specifically, each node i ∈ N is associated with some local variables
stacked as xi, which belongs to an intersection of Ri + 1 local feasible sets Kir and has a cost objec-
tive function fi(xi). Variables in node i are coupled with variables from their neighbour nodes in Ni

through linear constraints (4.1c). The objective is then to solve a minimal total cost across all the
nodes.

The goal is to develop a distributed algorithm that solves (4.1) such that each node i solves its
own subproblem and only exchanges information with its neighbour. In order to apply the ADMM
algorithm to (4.1), we need to reformulate it into the standard form of ADMM. We introduce two sets
of slack variables x and y :

• xir represents a copy of the original variable xi for 1 ≤ r ≤ Ri. For convenience, we refer the
original xi by xi0.

• yij represents the variables in node i observed at node j, for j ∈ Ni.
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Then (4.1) can be reformulated as

min
∑
i∈N

fi(xi0) (4.2a)

over x = {xir | 0 ≤ r ≤ Ri, i ∈ N}

y = {yij | j ∈ Ni, i ∈ N}

s.t.
∑

j∈Ni

Aijyji = 0 ∀ i ∈ N (4.2b)

xir ∈ Kir ∀ 0 ≤ r ≤ Ri, i ∈ N (4.2c)

xir = yii ∀ 1 ≤ r ≤ Ri, i ∈ N (4.2d)

xi0 = yij ∀ j ∈ Ni, i ∈ N (4.2e)

where x and y represent the two groups of variables in standard ADMM. Note that the consensus con-
straints (4.2d) and (4.2e) force all the duplicates xir and yij to be the same. Thus its solution xi0 is also
optimal to the original problem (4.1), and (4.2) has the benefit of falling into the general ADMM form.

Following the ADMM procedure, we relax the consensus constraints (4.2d) and (4.2e), whose La-
grangian multipliers are denoted by λir and µij , respectively. For a given penalty parameter ρ, the
generalised augmented Lagrangian can be written as

Lρ(x, y, λ, µ) =
∑
i∈N

 Ri∑
r=1

(
〈λir, xir − yii〉+ ρ

2‖xir − yii‖2nir

)
+

fi(xi0) +
∑

j∈Ni

(
〈µij , xi0 − yij〉+ ρ

2‖xi0 − yij‖2mij

) (4.3)

where the parameter nir and mij depend on the problem we will show how to design them in section
4.2. Next, we show that both the x-update and y-update can be solved in a distributed manner, i.e.
both of them can be decomposed into local subproblems that can be solved in parallel by each node i
with only neighbourhood communications.

First, we define the set of local variables for each node i, denoted by Ai, which includes its own
duplicates xir with the associated multiplier λir for 0 ≤ r ≤ Ri, and the “observations” yji of variables
from its neighbour Ni with the associated multiplier µji, i.e.

Ai := {xir, λir | 0 ≤ r ≤ Ri} ∪ {yji, µji | j ∈ Ni}. (4.4)

Next, we show how does each node i update {xir | 0 ≤ r ≤ Ri} in the x-update and {yji | j ∈ Ni} in
the y-update.

4.1.1 x-update

In the x-update, the optimization subproblem that updates xk+1 is

min
x∈X

Lρ(x, yk, λk, µk), (4.5)
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Where X is the feasible set of x. The objective can be written as a sum of local objectives as shown
below

Lρ(x, yk, λk, µk) =
∑
i∈N

 Ri∑
r=1

(
〈λk

ir, xir − yk
ii〉+ ρ

2‖xir − yk
ii‖2nir

)
+

fi(xi0) +
∑

j∈Ni

(
〈µk

ij , xi0 − yk
ij〉+ ρ

2‖xi0 − yk
ij‖2mij

)
=
∑
i∈N

Ri∑
r=0

Hir(xir)−
∑
i∈N

 Ri∑
r=0
〈λk

ir, y
k
ii〉+

∑
j∈Ni

〈µk
ij , y

k
ij〉


where

Hir(xir) =

 fi(xi0) +∑
j∈Ni

(
〈µk

ij , xi0〉+ ρ
2‖xi0 − yk

ij‖2mij

)
r = 0

〈λk
ir, xir〉+ ρ

2‖xir − yk
ii‖2nir

r > 0
(4.6)

Note that the last term of the objective function is independent of x and can therefore be dropped
since we minimize according to x. Then the problem (4.5) in the x-update can be written explicitly
as

min
∑
i∈N

Ri∑
r=0

Hir(xir)

over x = {xir | 0 ≤ r ≤ Ri, i ∈ N}

s.t. xir ∈ Kir 0 ≤ r ≤ Ri, i ∈ N

where both the objective and constraint are separable for 0 ≤ r ≤ Ri and i ∈ N . Thus it can be
decomposed into ∑i∈N (Ri + 1) independent problems that can be solved in parallel. There are Ri + 1
problems associated with each node i and the rth one can be simply written as

min
xir∈Kir

Hir(xir) (4.8)

whose solution is the new update of variables xir for node i. In the above problem, the constants
yk

ij , µ
k
ij ∈ Aj are not local to i and are stored in i’s neighbours j ∈ Ni. Therefore, each node i needs

to collect (yij , µij) from all of its neighbours prior to solving (4.8).

4.1.2 y-update

In the y-update, the optimization problem that updates yk+1 is

min
y∈Y

Lρ(xk+1, y, λk, µk) (4.9)

where the constraint set Y can be represented as a Cartesian product of |N | disjoint sets, i.e.

Y := ⊗i∈N {yji, j ∈ Ni |
∑

j∈Ni

Aijyji = 0}.
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The objective can be written as a sum of local objectives as below.

Lρ(xk+1, y, λk, µk) =
∑
i∈N

 Ri∑
r=1

(
〈λk

ir, x
k+1
ir − yii〉+ ρ

2‖x
k+1
ir − yii‖2

nir

)
+

fi(xk+1
i0 ) +

∑
j∈Ni

(
〈µk

ji, x
k+1
j0 − yji〉+ ρ

2‖x
k+1
j0 − yji‖2

mji

)
=
∑
i∈N

Gi({yji | j ∈ Ni}) +
∑
i∈N

fi(xk+1
i0 ) +

Ri∑
r=0
〈λk

ir, x
k+1
ir 〉+

∑
j∈Ni

〈µk
ji, x

k+1
j0 〉

 ,

where the last term is independent of y and

Gi({yji | j ∈ Ni}) =
Ri∑

r=1

(
−〈λk

ir, yii〉+ ρ

2‖x
k+1
ir − yii‖2nir

)
+
∑

j∈Ni

(
−〈µk

ji, yji〉+ ρ

2‖x
k+1
j0 − yji‖2mji

)

Then the problem (4.9) in the y-update can be written explicitly as

min
∑
i∈N

Gi({yji | j ∈ Ni})

over y = {{yji | j ∈ Ni} | i ∈ N}

s.t.
∑

j∈Ni

Aijyji = 0 ∀i ∈ N

which can be decomposed into |N | subproblems. The subproblem associated with node i is

min Gi({yji | j ∈ Ni}) (4.10a)

over {yji | j ∈ Ni} (4.10b)

s.t.
∑

j∈Ni

Aijyji = 0 (4.10c)

whose solution is the new update of {yji | j ∈ Ni} ∈ Ai. In (4.10), the constants xj0 ∈ Aj are stored
in i’s neighbor j ∈ Ni. Hence, each node i needs to collect xj0 from all of its neighbour prior to solving
(4.10).

The problem (4.10) can be solved with a closed form solution. If we stack the real and imaginary part
of the variables {yji | j ∈ Ni} in a vector with appropriate dimensions and denote it as z. Then (4.10)
takes the following form:

min 1
2 z

TQz + cT z (4.11a)

over z (4.11b)

s.t. Az = 0 (4.11c)

where Q is a positive diagonal matrix, A is a full row rank real matrix, and c is a real vector. Q, c,A
are derived from (4.10). The Lagrangian function is given by :

L(z, λ) = 1
2z

TQz + cT z + λTAz
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To achieve optimality, we need that ∇zL(z, λ) = 0, and since Az = 0, we have :

Qz + c+ATλ = 0

⇒ z +Q−1c+Q−1ATλ = 0

⇒ Az +AQ−1c+AQ−1ATλ = 0

⇒ AQ−1c+AQ−1ATλ = 0

⇒ λ = −
(
AQ−1AT

)−1
AQ−1c

By injecting the optimal value of λ into the first equation, we get :

Qz + c+ATλ = 0

⇒ Qz + c−AT
(
AQ−1AT

)−1
AQ−1c = 0

⇒ z =
(
Q−1AT

(
AQ−1AT

)−1
AQ−1 −Q−1

)
c

4.1.3 dual update

The update of the dual variables consists in a gradient ascent with the penalty parameter ρ as the
step-size. The update can be written as

λk+1
ir = λk

ir + ρ
(
xk+1

ir − yk+1
ii

)
0 ≤ r ≤ Ri, ∀i ∈ N (4.12a)

µk+1
ij = µk

ij + ρ
(
xk+1

i0 − yk+1
ij

)
∀j ∈ Ni, ∀i ∈ N (4.12b)

In (4.12), the constants yk+1
ij are stored in i’s neighbours j ∈ Ni. Hence, each node i needs to collect

yij from all its neighbours prior to updating its dual variables.

4.1.4 Conclusion

In summary, the original problem (4.1) is decomposed into local subproblems that can be solved in
a distributed manner using ADMM. At each iteration, each node i solves (4.8) in the x-update and
(4.11) in the y-update. There exists a closed form solution to the subproblem (4.11) in the y-update,
and hence whether the original problem (4.1) can be solved efficiently in a distributed manner depends
on the existence of efficient solutions to the subproblems (4.8) in the x-update, which depends on the
realization of both the objectives fi(xi) and the constraint sets Kir.
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4.2 Application to the OPF Problem

In this section, we show the ROPF problem (2.10) is a special case of (4.1), and hence can be solved
in a distributed manner using the method described in section 4.1. In particular, we show that the
corresponding subproblems in the x-update can be solved efficiently.

4.2.1 ADMM Formulation

In order to apply the aforementioned method, let’s show that the relaxation of the OPF problem can
be reformulated according to the previous model (4.1). Let’s consider

xi :=
{
{xi0, xi1} | xi0 := {Si0, `i0, vi0, si0} , xi1 := {vi1}

}
(4.13)

Ki0 :=

xi0 |

vi0 Si0

S∗
i0 `i0

 ∈ S+,
{
sφ

i0 ∈ I
φ
i | φ ∈ Φi

} (4.14)

Ki1 :={xi1 | vφ
i ≤ v

φφ
i1 ≤ v

φ
i , φ ∈ Φi} (4.15)

Then (2.10) takes the form of (4.1) with Ri = 1 for all i ∈ N , where (2.10b)–(2.10c) correspond to
(4.1c) and (2.10d)–(2.10f) correspond to (4.1d). Following the procedure in section 4.1, we introduce
two sets of slack variables: x and y.

The reformulation of (2.10) according to (4.2) is then :

min
∑
i∈N

∑
φ∈Φi

fφ
i

(
s

φ (x)
i0

)
(4.16a)

over x := {xir | 0 ≤ r ≤ 1, i ∈ N}

y := {yji | j ∈ Ni, i ∈ N}

s.t. Pi

(
v

(y)
Aii

)
= v

(y)
ii − ziS

∗ (y)
ii − S(y)

ii z
∗
i + zi`

(y)
ii z

∗
i i ∈ N+ (4.16b)

s
(y)
ii + diag

∑
i∈Ci

Pi

(
S

(y)
ji − zj`

(y)
ji

) = diag
(
S

(y)
ii

)
i ∈ N (4.16c)

 v
(x)
i0 S

(x)
i0

S
∗ (x)
i0 `

(x)
i0

 � 0 i ∈ N+ (4.16d)

s
φ (x)
i0 ∈ Iφ

i φ ∈ Φi i ∈ N+ (4.16e)

vφ
i ≤ v

φφ (x)
i1 ≤ vφ

i φ ∈ Φi i ∈ N+ (4.16f)

xir − yii = 0 r = 1 i ∈ N (4.16g)

xi0 − yij = 0 j ∈ Ni i ∈ N (4.16h)

where we put superscript ( · )(x) and ( · )(y) on each variable to denote whether the variable is up-
dated in the x-update or y-update. The x-update considers the constraints (4.16d)-(4.16f) (form the
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feasible set X ), whereas the y-update considers the constraints (4.16b) and (4.16c) (form the feasible
set Y). And the consensus constraints will be relaxed as explained before.

Note that each node i does not need full information of its neighbours. Specifically, for each node i,
only voltage information v

(y)
Aii

is needed from its parent Ai, and branch power S(y)
ji and current `(y)

ji

information from its children j ∈ Ci. Thus, yij contains only partial information, i.e.

yij :=


(S(y)

ii , `
(y)
ii , v

(y)
ii , s

(y)
ii ) j = i

(S(y)
iAi
, `

(y)
iAi

) j = Ai

(v(y)
ij ) j ∈ Ci

Meaning that, for each node and besides local variables, y holds some variables corresponding to the
voltage of their parent and the branch power and current of the lines connecting them to their children.
On the other hand, xi0 needs only to hold all the local variables and xi1 only needs to have a duplicate
of vi, i.e.

xir :=

 (S(x)
i0 , `

(x)
i0 , v

(x)
i0 , s

(x)
i0 ) r = 0

(v(x)
i1 ) r = 1

As a result, xir, yii and xi0, yij do not consist of the same components. Here, we abuse notations in
both (4.16g) and (4.16h), which are composed of components that appear in both items, i.e.

xi0 − yij :=


(S(x)

i0 − S
(y)
ii , `

(x)
i0 − `

(y)
ii , v

(x)
i0 − v

(y)
ii , s

(x)
i0 − s

(y)
ii ) j = i

(S(x)
i0 − S

(y)
iAi
, `

(x)
i0 − `

(y)
iAi

) j = Ai

(v(x)
i0 − v

(y)
ij ) j ∈ Ci

xi1 − yii :=
{

(v(x)
i1 − v

(y)
ii )

In the context of our application, let’s define
∥∥xi0 − yij

∥∥2
mij

by :

∥∥xio − yij

∥∥2
mij

=
(
2|Ci|+ 3

)
‖Si0 − Sii‖22 +

(
|Ci|+ 1

)
‖`i0 − `ii‖22 + 2‖vi0 − vii‖22 + ‖si0 − sii‖22 j = i

=
∥∥Si0 − SiAi

∥∥2
2 +

∥∥`i0 − `iAi

∥∥2
2 j = Ai

=
∥∥vi0 − vij

∥∥2
2 j ∈ Ci

This tailor-made norm helps us to simplify the objective function of the x-update (see next section).
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4.2.2 x-update

In the x-update, there are 2 subproblems associated with each bus i, the update of xi0 and xi1.
Remember that the problem associated with the xi0-update is given by

min Hi0(xi0) (4.17a)

over xi0 = {vi0, `i0, Si0, si0} (4.17b)

s.t.

vi0 Si0

S∗
i0 `i0

 � 0 (4.17c)

sφ
i0 ∈ I

φ
i φ ∈ Φi, (4.17d)

where,
Hi0(xi0) = fi0(xi0) +

∑
j∈Ni

(〈
µij , xi0

〉
+ ρ

2
∥∥xi0 − yij

∥∥2
Mij

)

Since the objective function only depends on the power injection, we assume that fi0(xi0) = fi0(si0).
Then, we can develops Hi0(xi0) in term of each variable {Si0, li0, vi0, si0}, such that

Hi0(xi0) = H
(1)
i0 (Si0) +H

(2)
i0 (`i0) +H

(3)
i0 (vi0) +H

(4)
i0 (si0)

Remember that any terme independent of xi0 can be removed without changing the optimal solution.
In that case, those functions can be expressed by (See appendix A.2 for the full development) :

H
(1)
i0 (Si0) = 2 ρ

2
(
|Ci|+ 2

) ∥∥∥Si0 − Ŝi

∥∥∥2

2

H
(2)
i0 (`i0) = ρ

2
(
|Ci|+ 2

)
‖`i0 − ŝi‖22

H
(2)
i0 (vi0) = ρ

2
(
|Ci|+ 2

)
‖vi0 − ŝi‖22

H
(4)
i0 (si0) = fi0(si0) + ρ

2‖si0 − ŝi‖22

where the values
{
Ŝi, ˆ̀

i, v̂i, ŝi

}
are some constant parameters that depend on local primal/dual

variables but also on primal/dual variables located at i’s neighbours. At the end, the objective function
can be written as :

Hi0(xi0) = fi0(xi0) +
∑

j∈Ni

(〈
µij , xi0

〉
+ ρ

2
∥∥xi0 − yij

∥∥2
Mij

)
(4.18)

= ρ

2
(
|Ci|+ 2

) ∥∥∥∥∥∥
vi0 Si0

S∗
i0 li0

−
 v̂i Ŝi

Ŝ∗
i

ˆ̀
i

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
H

(1)
i (Si0,`i0,vi0)

+ fi0(si0) + ρ

2‖si0 − ŝi‖22︸ ︷︷ ︸
H

(2)
i (si0)

(4.19)

Hence, the objective function Hi0(xi0) can be decomposed into two parts, where the first part
H

(1)
i (S(x)

i0 , `
(x)
i0 , v

(x)
i0 ) involves variables (S(x)

i0 , `
(x)
i0 , v

(x)
i0 ) and the second part H(2)

i (s(x)
i0 ) involves s(x)

i0 .
Note that the constraint can also be separated into two independent constraints. The problem can
be decomposed into two subproblems, where the first one solves the optimal (S(x)

i0 , `
(x)
i0 , v

(x)
i0 ) and the

second one solves the optimal s(x)
i0 .
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The first subproblem can be written explicitly as

min H
(1)
i (Si0, `i0, vi0)

over Si0, `i0, vi0

s.t.

vi0 Si0

S∗
i0 li0

 � 0

which can be solved using eigen-decomposition of a 6×6 matrix via the following theorem (see appendix
[REF] for the proof).

Theorem 2. Suppose W ∈ Sn and denote X(W ) := arg minX∈Sn
+
‖X − W‖22. Then X(W ) =∑

i:λi>0 λiuiu
∗
i , where λi, ui are the ith eigenvalue and orthonormal eigenvector of matrix W , respec-

tively.

The second problem is

min fi (si0) + ρ

2‖si0 − ŝi‖22 (4.20a)

over si0 (4.20b)

s.t. sφ
i0 ∈ I

φ
i ∀φ ∈ Φi (4.20c)

Recall that if fi(si0) = ∑
φ∈Φi

fφ
i (sφ

i0), then both the objective and constraint are separable for each
phase φ ∈ Φi. Therefore, the problem can be further decomposed into |Φi| subproblems as below.

min fφ
i

(
sφ

i0

)
+ ρ

2
∥∥∥sφ

i0 − ŝ
φ
i

∥∥∥2

2

over sφ
i0

s.t. sφ
i0 ∈ I

φ
i

Let’s define a closed form solution for this problem if the objective function takes the form : fφ
i =

αi
2 p

2
i + βipi, where αi ≥ 0. Note that this form includes the possibility to minimize the total line loss

and/or the generation cost (quadratic cost). And assume that

Iφ
i =

{
p+ iq | p ∈ [p

i
, p̄i], q ∈ [q

i
, q̄i]

}
In this case, the optimisation problem can be rewritten as :

min a2
2 p

2 + a1p+ b2
2 q

2 + b1q

over p, q

s.t. p ≤ p ≤ p̄

q ≤ q ≤ q̄

And the closed-form solution is given by :

p∗ =
[
−a1
a2

]p̄

p
q∗ =

[
−b1
b2

]q̄

q
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where [ . ]ba = min{b,max{a, . }}.

The update of xi1 consists of only one component vi1. It can be written explicitly as

min Hi1(vi1)

over vi1

s.t. vφ
i ≤ v

φφ
i1 ≤ v̄

φ
i φ ∈ Φi

where

Hi1(xi1) = 〈λi1, xi1〉+ ρ

2‖xi1 − yii‖2ni1

= 〈λi1, vi1〉+ ρ

2‖vi1 − vii‖22

= ρ

2

∥∥∥∥∥vi1 − vii + λi1
ρ

∥∥∥∥∥
2

2
+ Cst

Giving us this equivalent formulation

min 1
2

∥∥∥∥∥vi1 − vii + λi1
ρ

∥∥∥∥∥
2

2
(4.21a)

over vi1 (4.21b)

s.t. vφ
i ≤ v

φφ
i1 ≤ v̄

φ
i φ ∈ Φi (4.21c)

This problem enjoys a closed-form solution, given by

vφ1φ2
i1 =


[
vii − λi1

ρ

]v̄φ1

v
φ1
i

if φ1 = φ2

vii − λi1
ρ if φ1 6= φ2

In brief, the x-update for each bus i can be solved through a closed form solution and an eigen-
decomposition of a 6 × 6 matrix. In the above problems, some parameters are not local to i and are
stored in i’s neighbours j ∈ Ni. Therefore, each node i needs to collect them from all its neighbours
prior to solving (4.17) and (4.20).
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4.2.3 y-update

In the y-update, each node i must solved its own subproblem of the form (4.10). In the special case
of the optimal power flow, the subproblem associated with each node i can be written as

min Gi

({
yji | j ∈ Ni

})
over

{
yji | j ∈ Ni

}
s.t. Pi(vAii) = vii − ziS

∗
ii − Siiz

∗
i + zi`iiz

∗
i

sii = −diag

∑
j∈Ci

Pi(Sji − zj`ji)− Sii


where

Gi

({
yji | j ∈ Ni

})
= −〈λi1, vii〉+ ρ

2‖vi1 − vii‖22 +
∑

j∈Ni

−
〈
µji, yji

〉
+ ρ

2
∥∥xj0 − yji

∥∥2
Mji

Objective Function

We can decomposed this objective function according to each variable contained in y such that :

Gi

({
yji | j ∈ Ni

})
= G

(1)
i (Sii) +G

(2)
i (`ii) +G

(3)
i (vii) +G

(4)
i (sii)

+
∑
j∈Ci

G
(5,j)
i (Sji) +

∑
j∈Ci

G
(6,j)
i (`ji)

+ G
(7)
i (vAii)

See appendix A.3 for the complete development. All those functions are composed of a quadratic and
linear term, and can therefore take the form of (4.11). Indeed, if we stack the real and imaginary part
of the variables {yji | j ∈ Ni} in a vector with appropriate dimensions and denote it as z. Then, we
can reformulate the objective function in the following form :

1
2 z

TQz + cT z

If we denote A(:) as the vectorisation of the matrix A which converts the matrix into a column vector,
the inner product between two matrices can be reformulated in terms of their vectorization :

〈A,B〉 = Re
{

Tr
(
A∗B

)}
= Re

{
A(:)∗B(:)

}
= Re

{
A(:)T

}
Re
{
B(:)

}
+ Im

{
A(:)T

}
Im
{
B(:)

}

By using this formula, we can develop the objective function (see appendix [REF] for the complete
development). The matrix Q and the vector c are given by :
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z =



Re
{
Sii(:)

}
Re
{
`ii(:)

}
Re
{
vii(:)

}
Re
{
sii(:)

}
Re
{
vAii(:)

}
Re
{
Sji(:)

}
Re
{
`ji(:)

}

Im
{
Sii(:)

}
Im
{
`ii(:)

}
Im
{
vii(:)

}
Im
{
sii(:)

}
Im
{
vAii(:)

}
Im
{
Sji(:)

}
Im
{
`ji(:)

}



c = −



Re
{
µ

(1)
ii (:) + ρ

(
2|Ci|+ 3

)
S+

i0(:)
}

Re
{
µ

(2)
ii (:) + ρ

(
|Ci|+ 1

)
`+i0(:)

}
Re
{
λi1(:) + µ

(3)
ii (:) + ρv+

i1(:) + 2ρv+
i0(:)

}
Re
{
µ

(4)
ii + ρs+

i0

}
Re
{
µ

(3)
Aii

(:) + ρv+
Ai0(:)

}
Re
{
µ

(1)
ji (:) + ρS+

j0(:)
}

Re
{
µ

(2)
ji (:) + ρ`+j0(:)

}

Im
{
µ

(1)
ii (:) + ρ

(
2|Ci|+ 3

)
S+

i0(:)
}

Im
{
µ

(2)
ii (:) + ρ

(
|Ci|+ 1

)
`+i0(:)

}
Im
{
λi1(:) + µ

(3)
ii (:) + ρv+

i1(:) + 2ρv+
i0(:)

}
Im
{
µ

(4)
ii + ρs+

i0

}
Im
{
µ

(3)
Aii

(:) + ρv+
Ai0(:)

}
Im
{
µ

(1)
ji (:) + ρS+

j0(:)
}

Im
{
µ

(2)
ji (:) + ρ`+j0(:)

}



Q = ρ diag



(
2|Ci|+ 3

)
I|Φi|2(

|Ci|+ 1
)
I|Φi|2

3I|Φi|2

I|Φi|

I|Φi|2

I|Φi|2

I|Φi|2

(
2|Ci|+ 3

)
I|Φi|2(

|Ci|+ 1
)
I|Φi|2

3I|Φi|2

I|Φi|

I|Φi|2

I|Φi|2

I|Φi|2



Constraints

The two constraints associated with the y-update must also be reformulated in the form of Az = 0. The
kronecker product is frequently used together with the vectorization to express matrix multiplications.
In particular,

vec (ABC) =
(
CT ⊗A

)
vec (B) (4.22)

Let’s express the fist constraint according to the vectorization of S, `, v and vA (For notational conve-
nience, the indice i is skipped).

Pi(vA) = v −
(
zS∗ + Sz∗)︸ ︷︷ ︸

(1)

+ z`z∗︸︷︷︸
(2)

Since the variables are all complex, this equality must hold for the real part and the imaginary part.
Define for each complex variable z the following decomposition, z = z1 + i z2. Then the real and
imaginary parts of (1) are

vec
(
Re
{
zS∗ + Sz∗}) =

(
(z1 ⊗ I) + (I ⊗ z1)P

)︸ ︷︷ ︸
M1

vec (S1) +
(
(z2 ⊗ I) + (I ⊗ z2)P

)︸ ︷︷ ︸
M2

vec (S2)

vec
(
Im
{
zS∗ + Sz∗}) =

(
(I ⊗ z2)P − (z2 ⊗ I)

)︸ ︷︷ ︸
M3

vec (S1) +
(
(z1 ⊗ I)− (I ⊗ z1)P

)︸ ︷︷ ︸
M4

vec (S2)
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where P is defined such that vec
(
AT
)

= P vec (A). In the same way, the real and imaginary parts of
(2) are :

vec
(
Re
{
z`z∗}) =

(
(z1 ⊗ z1) + (z2 ⊗ z2)

)︸ ︷︷ ︸
P1

vec (`1) +
(
(z2 ⊗ z1)− (z1 ⊗ z2)

)︸ ︷︷ ︸
P2

vec (`2)

vec
(
Im
{
z`z∗}) =

(
(z1 ⊗ z2)− (z2 ⊗ z1)

)︸ ︷︷ ︸
−P2

vec (`1) +
(
(z1 ⊗ z1) + (z2 ⊗ z2)

)︸ ︷︷ ︸
P1

vec (`2)

Real Part

vec
(
P
(
vAii,1

))
= vec

(
vii,1

)
−M1vec

(
Sii,1

)
−M2vec

(
Sii,2

)
+ P1vec

(
`ii,1

)
− P2vec

(
`ii,2

)
(4.23)

Imaginary Part

vec
(
P
(
vAii,2

))
= vec

(
vii,2

)
−M3vec

(
Sii,1

)
−M4vec

(
Sii,2

)
− P2vec

(
`ii,1

)
+ P1vec

(
`ii,2

)
(4.24)

The same method can be used to expressed the second constraint in term of the vectorisation of the
variables.

sii + diag

∑
j∈Ci

Sji − zj`ji

 = diag (Sii)

As before, the equality must hold for the real and imaginary part. Let’s define M such that diag(A) =
Mvec (A). Then, the real and imaginary parts of zj lji can be reformulated using (4.22)

vec
(
Re
{
zj`ji

})
= vec

(
zj,1`ji,1 − zj,2`ji,2

)
= (I ⊗ zj,1)︸ ︷︷ ︸

Nj,1

vec
(
`ji,1

)
− (I ⊗ zj,2)︸ ︷︷ ︸

Nj,2

vec
(
`ji,2

)
vec

(
Im
{
zj`ji

})
= vec

(
zj,2`ji,1 + zj,1`ji,2

)
= (I ⊗ zj,2)︸ ︷︷ ︸

Nj,2

vec
(
`ji,1

)
+ (I ⊗ zj,1)︸ ︷︷ ︸

Nj,1

vec
(
`ji,2

)

Real Part

sii,1 +M
∑
j∈Ci

(
vec

(
Sji,1

)
−Nj,1vec

(
`ji,1

)
+Nj,2vec

(
`ji,2

))
= M vec

(
Sii,1

)
(4.25)

Imaginary Part

sii,2 +M
∑
j∈Ci

(
vec

(
Sji,2

)
−Nj,2vec

(
`ji,1

)
−Nj,1vec

(
`ji,2

))
= M vec

(
Sii,2

)
(4.26)

We can know combined the constraints (4.23)-(4.26) to form the matrix A such that Az = 0.

A =



−M1 P1 I 0 −I 0 0 −M2 P2 0 0 0 0 0

−M3 −P2 0 0 0 0 0 −M4 P1 I 0 −I 0 0

−M 0 0 I 0 M −MNj,1 0 0 0 0 0 0 MNj,2

0 0 0 0 0 0 −MNj,2 −M 0 0 I 0 M −MNj,1


47



Chapter 4. A Distributed Algorithm for the OPF Problem

A small Improvement Note that the algorithm will converge towards a solution such that the
voltages v and the branch currents ` are hermitian matrices. This constraint is enforced in the x-
update but not in the y-update. That’s a part of the algorithm’s job to force the voltages and the
branch currents contained in y to be hermitian. Nevertheless we could argue that if we also enforce
this constraint in the y-update, there certainly will be a decrease of the number of iterations since
both x and y are already looking for variables satisfying this constraint. Hence, less work should be
done to find a agreement between x and y since they already agree on this constraint.

To force a matrix X = X1 + iX2 to be hermitian, we need that X1 = XT
1 and X2 = −XT

2 . We can
reformulate those constraints in term of the vectorization of X1 and X2.

X1 = XT
1 ⇔ vec (X1) = vec

(
XT

1

)
⇔ (I− P )vec (X1) = 0

X2 = −XT
2 ⇔ vec (X2) = −vec

(
XT

2

)
⇔ (I + P )vec (X2) = 0

Where P is defined such that vec
(
XT

)
= Pvec (X). Fortunately, those constraints are also of the

form Az = 0, and can therefore be added to the matrix A already built. We are now able to enforce
for each node i that its matrices vii, lii, vAii and `ji, ∀j ∈ Ci, must be hermitian.

Solution

It has been shown that the y-update can be reformulated into the form of (4.11). We can now apply
the analytical solution of this problem :

z =
(
Q−1AT

(
AQ−1AT

)−1
AQ−1 −Q−1

)
︸ ︷︷ ︸

T

c

where Q is a positive diagonal matrix, A is a full row rank real matrix, and c is a real vector.

Note that only the vector c changes over time, whereas A and Q don’t change from one iteration to
another. Thus, they can be formed at the beginning of the iterative process for each node in order to
avoid repeating their construction and their inversion at each iteration. Only the matrix T must be
stored locally for each node i ∈ N . In the end, the resolution of the y-update comes down to a simple
multiplication between a square matrix and a vector.

4.2.4 Dual Update

The update of the dual variables is much more straightforward than the update of the primal variables.
It consists of a gradient ascent. Each node i must perform the following updates :

µ
(1) +
ii = µ

(1)
ii + ρ

(
S+

i0 − S
+
ii

)
µ

(1) +
ji = µ

(1)
ji + ρ

(
S+

j0 − S
+
ji

)
∀j ∈ Ci

µ
(2) +
ii = µ

(2)
ii + ρ

(
`+i0 − `

+
ii

)
µ

(2) +
ji = µ

(2)
ji + ρ

(
`+j0 − `

+
ji

)
∀j ∈ Ci

µ
(3) +
ii = µ

(3)
ii + ρ

(
v+

i0 − v
+
ii

)
µ+

Aii
= µAii + ρ

(
v+

Ai0 − v
+
Aii

)
µ

(4) +
ii = µ

(4)
ii + ρ

(
s+

i0 − s
+
ii

)
λ+

i = λi + ρ
(
v+

i1 − v
+
i0

)
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Note that some of the constant are stored in i’s neighbours j ∈ Ni. Hence, each node i needs to collect
Sj0, `j0 from its children and vAi0 from its parent prior to solving the dual update.

4.2.5 Conclusion

In summary, the original relaxation of the OPF problem has been decomposed into local subproblems
that can be solved in a distributed manner using ADMM. The problem structure has been exploited in
such a way that the subproblems (x-update and y-update) are reduced to either a closed-form solution,
or a eigen-decomposition of a 6×6 hermitian matrix, which significantly reduce the convergence time.
Moreover, the nodes only exchange limited messages with their immediate neighbours.
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5 | Implementation

This section addresses the implementation of the algorithm described in section 4.2. In particular,
we explained how the starting point is chosen, how a network is represented, how to quantify the
exactness of the solution obtained, etc.

5.1 Structure of the network

Each node in the network is denoted by an index i from zero for the substation node to n. A network
is represented as a set of nodes referencing each other as their ancestor or their children, in a way of
a linked list. The complete structure of a node is illustrated on figure (5.1). There are three different
categories: (a) local variables related to values associated with the node, as its complex voltage, its
power injection, etc. (b) some parameters related to the topology of the network, to operational con-
straints, etc. (c) variables that are local observations of its neighbours’ variables.

This structure enables an easy implementation in a peer-to-peer architecture. In this architecture,
each device contains its on structure and its own processor, which carries out the required local
optimisation and exchanges messages with its neighbours on the network. In this setting, the devices
do not need to divulge their objectives or constraints. They only need to support a simple protocol for
interacting with their neighbours. The decentralized algorithm elaborated in section 4.2 ensures that
each device has no information about the rest of the network, and only exchanges limited message
with its immediate neighbours. Hence, whether the network contains ten or one million nodes, the
structure of a node doesn’t change and the computation associated with it remains the same.

5.2 Initialization

A good starting point usually reduces the number of iterations for a given tolerance. Hereafter, I
describe an initialisation procedure inspired from [PL15]. The procedure works on the nodal variables
Vi and Ii for each node i ∈ N , the variables (S, l, v) are then deduced. The initialisation procedure
find a feasible solution assuming zero impedance on the lines. In this case, the two major constraints
of the OPF problem can be simplified and transformed into:
Pi(vAi) = vi −

(
ziS

∗
i + Siz

∗
i

)
+ zi`iz

∗
i

si + diag
(∑

j∈Ci
Pi
(
Sj − zjlj

))
= diag (Si)

=⇒


Pi(vAi) = vi i ∈ N+

si + diag
(∑

j∈Ci
Pi
(
Sj
))

= diag (Si) i ∈ N

Hence, each node has the same voltage values at the beginning, i.e.

V φ1
i = V ref

0 , V φ2
i = V ref

0 e
2π
3 , V φ3

i = V ref
0 e−i 2π

3 ∀i ∈ N
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NODE i

Parent

phases:
ΦAi

voltage:
vAiidual:

µAii

Network

phases:
Φi

branch:
zi

Parameter

penalty:
ρ

voltage
bounds:
[vi, v̄i]

power
injection
region:
[si, s̄i]objec-

tive:
{α, β}

Children

Child j1

phases:
Φj1 Sj1i

`j1i

µ
(1)
j1i

µ
(2)
j1i

Child j2

phases:
Φj2

Sj2i

`j2i

µ
(1)
j2i

µ
(2)
j2i

· · ·

dual

µ
(1)
ii

µ
(2)
ii

µ
(3)
ii

µ
(4)
ii

λ

primal

x
Si0

`i0

vi0

si0

vi1

y

Sii

`ii

vii

sii

;
Local variables
Parameters (fixed)
Neighbours’ variables

Figure 5.1: Structure of a node
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For each node i ∈ N , we initialise the power injection si using any feasible point in the injection
region Ii. When a node i ∈ N doesn’t have any children, the second constraint can be simplified even
further :

si = diag (Si)

hence, by definition of the complex branch power, Iφ
i =

(
Sφφ

i

V φ
i

)∗
=
(

sφ
i

V φ
i

)∗
, for all φ ∈ Φi, and i ∈ N ,

such that Ci = ∅. If a node i ∈ N has some children then, using the current balance, we obtain :

Iφ
i =

 sφ
i

V φ
i

∗

+
∑
j∈Ci

Iφ
j

Thanks to this result, we can define an algorithm to initialise the current Ii for each node i ∈ N :

Algorithm 2: Initialisation of the current I
input : (v, S, `) that satisfies the conditions in Lemma (1)
output: (V, I)

1 initCurrent(arg1, arg2, arg3)

2 Iφ
i ←−

(
sφ

i

V φ
i

)∗

3 Nvisit ←− {0}
4 while Nvisit 6= N do
5 find i→ j such that i ∈ Nvisit and j /∈ Nvisit

6 compute

Iij ←
1

Tr(vi)
S∗

ijVi

Vj ← Vi − zijIij

Nvisit ← Nvisit ∪ {j}

7 end

Now, we can to compute the quantity vi0 = ViV
∗

i , `i0 = IiI
∗
i , Si0 = ViI

∗
i , and si0 = si, for i ∈ N .

Finally, it remains to set the variables y at the same values : yij = xi0 ∀j ∈ Ni, i ∈ N

xi1 = xi0 ∀i ∈ N

5.3 Stopping Criterion

Even if there is no general rule for the stoping criterion, a simple stopping criterion for the ADMM
method is ∥∥∥rk

∥∥∥
2
≤ εprimal

∥∥∥sk
∥∥∥

2
≤ εdual

where εprimal > 0 and εdual > 0 are the feasibility tolerances for the primal and dual residuals. Both
quantities can be normalised according to the network size :

εprimal = εdual = εabs
√
|N |
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where εabs > 0 is some absolute parameter. A good value of εabs in practice turns around 10−4, 10−5.
In the context of this project, I took εabs = 10−5.

5.4 Dynamic Penalty Parameter

The ADMM method is based on the relaxation of constraints linking the variables x and y. The vio-
lation of the primal feasibility is then penalised using a parameter ρ. Many examples in the literature
(see e.g. [BPC+11]) show that the value of ρ can have a dramatic effect on the rate of convergence
in practice. A standard extension is to use different penalty parameters ρk for each iteration. The
objective is twofold: improve the convergence in practice, and making the algorithm less dependent
on the initial choice of the penalty parameter. Such approach has been studied in the context of the
method of multipliers, and it has been shown that a superlinear convergence might be achieved. In
the case of ADMM, this approach makes the proof of the convergence more difficult, however it holds
if we assume a fixed value of ρ after a given number of iterations.

It’s shown in [SYP15] that this standard approach often works well in practice:

ρk+1 :=


αincρk if

∥∥∥rk
∥∥∥

2
> β

∥∥∥sk
∥∥∥

2
ρk

αdec if
∥∥∥sk
∥∥∥

2
> β

∥∥∥rk
∥∥∥

2
ρk otherwise

(5.1)

where αinc, αdec > 1, and β > 1 are parameters. The goal of this approach is to keep both primal
and dual residual norms within a factor β from each other while they both converge to zero. Indeed,
recall that the primal and dual residuals in the standard form are given by :

rk+1 = Axk+1 +Bzk+1 − c

sk+1 = ρATB(zk+1 − zk)

The ADMM method suggests that a large value of the penalty parameter involves a large penalty on
the violation of primal feasibility and tends to produce small primal residuals. However the definition
of the dual residual sk+1 suggests that small values of the penalty parameter ρ tend to reduce the
dual residual but at the expense of the primal feasibility that may increase.

The scheme (5.1) increases the penalty parameter ρ by a factor αinc when the primal residual appears
larger than the dual residual, and reduce ρ by αdec when the primal residual appears too small com-
pared to the dual residual.

Notice that when varying the penalty parameter, some predefined parameters must be modified.
Recall that the solution of the y-update implies a simple matrix-vector multiplication where the
vector changes at each iteration whereas the matrix is fixed and can be cached at the beginning of the
iterative process.

z? =
(
Q−1AT

(
AQ−1AT

)−1
AQ−1 −Q−1

)
c

Since Q depends on ρ, The matrix T is in fact a function of the penalty parameter ρ. Fortunately, we
can extract the penalty parameter from the closed-form solution. By definition of the diagonal matrix
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Q, let’s define Q̃ such that Q = ρQ̃, then

z? =
(
Q−1AT

(
AQ−1AT

)−1
AQ−1 −Q−1

)
c

=

1
ρ
Q̃−1AT

(
A

1
ρ
Q̃−1AT

)−1

A
1
ρ
Q̃−1 − 1

ρ
Q̃−1

 c
= 1
ρ

(
Q̃−1AT

(
AQ̃−1AT

)−1
AQ̃−1 − Q̃−1

)
︸ ︷︷ ︸

T̃

c

Since the matrix T̃ doesn’t change from one iteration to another, we can stored the matrix T̃ of each
node into its local memory at the start of the algorithm.

5.5 Measure of the exactness of the solution

To quantify how close a solution of the SDP problem is to rank-1, we need to define a metric. Due to
finite numerical precision, even if the solution of the relaxation is exact, the matrices (2.9) are only
approximately rank-1. To quantify how close those matrix are to rank one, we can look at their ratios
|λ2/λ1|, where λ1 and λ2 are their two largest eigenvalues, with |λ1| > |λ2|. The smaller those ratios
are, the closer the matrices are to rank one. We only keep the largest ratio over all the matrices to
quantify how close are solution is to rank one (i.e. exact solution).

5.6 Conclusion

This chapter briefly described the key points behind the implementation of the decentralised algorithm.
The pertinence of those choices is discussed in the next chapter.
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6 | Numerical Results

In this chapter, we report numerical results on different test networks. They are chosen to illustrate
the effectiveness of the algorithm and a variety of the ideas developed in the previous sections. In the
first part of this chapter, I apply the algorithm on a small made-up network in order to explore the
behaviour of the algorithm and to verify the exactness of the algorithm. In the second part of this
chapter, the algorithm is applied to real networks [Ker01a]. And we show that the SDP relaxation of
the OPF problem is generally exact for real networks.

6.1 First Test

The network chosen to illustrate the effectiveness of the algorithm and its behaviour is depicted on
figure 6.1 and a part of the datas associated with the network is available on table 6.1 (for the rest,
see appendix A.4). The substation node (node 0) and node 1 have three phases, whereas nodes 2
and 3 have two and one phase, respectively. Table 6.1 describes the spot load for each node and the
maximum complex power that can be produced. Since the substation node is responsible for drawing
the power from the transmission network to the distribution network for power balance, there is no
upper or lower bound associated with node 0. The voltage magnitude is allowed to deviate by a
factor of 10% from the nominal value (in this case, 50 V). Finally the objective function consists in
minimizing the total power loss over the network.

0

1

2 3

Figure 6.1: Test network

Node Active Power (W) Reactive Power (VAR)
Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

1 3 0 5 3 0 5
2 3 3 · 0 0 ·

G
en

er
at

io
n

3 · · 1 · · 1
Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

1 6.1 2 3 3.1 0.23 4.6
2 3.45 1 · 0 3 ·

Sp
ot

Lo
ad

3 · · 1.28 · · 1

Table 6.1: Spot load and generation capacity for each node of the test
network
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Centalized Solver

The relaxation of the OPF problem has also been modelled using a popular modelling framework
for convex optimization (CVX, see [GB14]). The optimization solver used, is based on a primal-dual
interior point method, and works on the centralized formulation of the OPF problem. The objective
was twofold : (a) verify the exactness of the solution obtained by the decentralized algorithm, (b)
compare the computation time for solving the relaxation.

Computation Time

The ADMM method takes the form of a decomposition-coordination procedure, in which the solu-
tions to small local subproblems are coordinated to find a solution to a large global problem. This
method makes it possible to split our problem into |N | subproblems, which can be solved in parallel.
In this context, we assumed that each node contains its own processor, which carries out the required
optimization. However because of the coordination and the communications with their immediate
neighbours, the nodes have to wait for the termination of the update of their neighbours before being
able to perform the next iteration. The computation time is calculated as follow : each node performs
its x-update and the maximum computation time is stored in tkx. In the same way, we store the
maximum computation time for both the y-update and the dual update. Then the computation time
at iteration k is given by, tk = tkx + tky + tkdual (see figure 6.2).

t"#$%
&

t'&

t(&

t&

0 1 2 3
Figure 6.2: Computation time at iteration k, tk

6.1.1 The Computation of the Solution

Recall that the optimality conditions for the ADMM method sum up to the convergence of the primal
and dual residuals rk and sk, respectively. The natural stopping criteria chosen in this project is that
both primal and dual residuals are below 10−5√|N |, where |N | is the number of nodes in the network.
Figure 6.3 shows the the evolution of rk/

√
|N | and sk/

√
|N | versus iteration k. The optimal value of

the objective function f? was computed a priori using the centralized solver with the highest tolerance
level (cvx_precision high, see [GB14]). The total number of iterations is 464, for a computation time
of 0.658s, and a average computation time per iteration of 1.4181 10−3s. The speed per iteration is
mainly due to the closed-form solutions derived for all sub-problems. If instead, we were using an
iterative solver (CVX) for each of the subproblems, the computation time would have been multiplied
by at least one hundred. This highlights the necessity to derive closed-form solution for each of the
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subproblems.
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Figure 6.3: On the left, we see the evolution of both primal and dual residuals, rk/
√
|N | and sk/

√
|N |. On

the right, we can see the absolute error between the value of the objective function at iterate k, fk, and the
optimal objective function, f?.

Interestingly, the computation time of the solver working on the centralized formulation is 0.98s for
a total of 28 iterations. This shows that ADMM can be competitive with the best known methods
(interior point methods) even for a small instance of the problem, as long as the computation is per-
formed in parallel and not serially.

Figure 6.3 shows the general behaviour of the evolution of the residuals. There are several important
aspects to note. Firstly, we observe a linear rate of convergence as the theory predicts. Secondly, the
pattern describes by the evolution of the residuals shows clear bumps of both the primal and the dual
residuals. But even more interestingly, when one residual is a the top of its bump, the other one is
at the bottom of its curve. Indeed, the primal residual is fighting for the equality between the x and
the y variables, whereas the dual update is trying to stabilise the iterates yk. When the value of the
primal residual decreases, it bothers the dual residual because he has to change the y variable, and
quite logically it produces a increase of the dual residual. They both play this game in an alternating
way (remember what the A stands for in ADMM) until a given tolerance level is reached. This is
similar to a negotiation in which both parties discuss, debate, confront their point of view and step
by step find an agreement.

6.1.2 The Solution

Recall that the relaxation of the OPF problem is exact if the matrices 2.9 are rank-1. To quantify how
close those matrices are to rank one, we can look at their ratios |λ2/λ1|, where λ1 and λ2 are their two
largest eigenvalues, with |λ1| > |λ2|. The smaller those ratios are, the closer the matrices are to rank
one. We only keep the largest ratio over all the matrices to quantify how close our solution is to rank
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one (i.e. exact solution). With a ratio of 4.6526 10−13, we can take for granted that the relaxation of
the OPF problem for our test network is exact.

Since we obtained a rank-1 solution, the recovering algorithm described in section 2.2 can be ap-
plied for each node i ∈ N+. We extract from the voltage magnitude vi, the complex branch power
Si and the current magnitude li, the complex voltage Vi and the complex current Ii for each node
i ∈ N+. The complete description of the solution is available in the tables (A.1)-(A.3) in appendix A.5.

The interpretation of the solution is vey simple : If a node has the capacity to fulfil its own demand
using local generators, it’s more beneficial to produce locally since it doesn’t involve any power loss.
However if the local capacity isn’t sufficient to satisfy the demand, external generators can be used.
Those generators are chosen in order for the path from the supplier to the consumer to be the lowest
in energy consumption, while of course satisfying the power flow equations.

6.2 How to Tune the Algorithm

6.2.1 Initialization

The goal of the initialisation procedure described in section 5.2 is to find a feasible solution assuming
zero impedance on the lines. By using such starting point, we hope to reduce the number of iterations
required to achieve a given tolerance level. Figure 6.4 shows the evolution of the residuals. The same
pattern is observed, except that at the beginning both primal and dual residuals are much smaller.
Nevertheless, the number of iterations is quite identical : 462, instead of 464. What we observe is that
the gain from using the initialisation procedure is catch up by the algorithm using a basic starting
point, in two or three iterations. Note that this behaviour isn’t specific to this particular instance of
the problem. In average, the initialisation procedure reduces the number of iterations by less than
5%. therefore the initialisation procedure isn’t vital but it can’t harm since the starting point is easy
to compute.
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Figure 6.4: The evolution of both primal and dual residuals, and the absolute error between the value of the
objective function fk, and the optimal objective function, f?, when we use the initialisation procedure.
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6.2.2 The Penalty Parameter, aka the selfishness parameter

Many examples in the literature (see e.g. [BPC+11]) show that the value of ρ can have a dramatic
effect on the rate of convergence in practice. To illustrate the influence of the penalty parameter on
the convergence of the method in practice, I choose a more complex network composed of 30 nodes.
Figure 6.5 shows the evolution of the residuals for this network and for a penalty parameter of 1.
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Figure 6.5: number of iterations : 1754, total CPU time : 1.98s

On figure 6.6, we see the evolution of the residuals when the penalty parameter is set to 100, instead
of 1 in the previous example. Since the violation of the primal feasibility is penalised using this pa-
rameter ρ, we observe low values of the primal residual but at the expense of the dual residual. Due to
the high value of the penalty parameter, the primal is totally self-centred and try to have the smallest
residual as possible without considering the dual. Actually he persists quite a long time on this path
(∼ 3500 iterations). Nevertheless, at some point, he understands that optimality cannot be achieved
with this logic. After more than 4000 iterations, the primal residual changes its strategy and accepts
to take a step backward in order to jointly decrease with the dual residual.

This observation Highlights the importance of the penalty parameter on the rate of convergence in
practice. To make the algorithm less dependent on the initial choice of the penalty parameter, we
described in section 5.4 a dynamic scheme allowing us to update the value of the penalty parameter
according to the difference between the primal and the dual residuals. If the primal and the dual
residuals are too far away from each other then the penalty parameter is updated in order to force
them to stick together. Figure 6.7 shows the result of this scheme, with an initial penalty parameter
set to 100. The value of the penalty parameter quickly decreases from 100 to end up with values close
to one. When it decreases, it produces an increase of the primal residual because the primal feasibility
becomes less penalised. Those decreases of the penalty parameter correspond to the abrupt increases
of the primal residual on figure 6.7. Notice that the number of iterations (2397) is bigger than if we
had used a fixed, but more suitable penalty parameter, in this case ρ = 1. In the case of a good initial
penalty parameter, the dynamic update of ρ will not play any role since the two residuals will stay
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Figure 6.6: number of iterations : 5116, total CPU time : 3.92s

close from each other. Therefore, there is no downside risk in using the dynamic update of the penalty
parameter. If ρ is correctly chosen, it doesn’t change anything, if not, then the number of iterations
can be drastically reduced. In brief, one should always use this procedure.
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Figure 6.7: number of iterations : 2397, total CPU time : 2.17s
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6.3 Impact of Network Topology

In this section, I would like to determine the impact of the size of the network on the number of
iterations required to achieve a tolerance level of 10−5√|N |, where |N | is the size of the network. In
particular, we simulate the algorithm on two extreme cases : (a) a line network (see figure 6.8) and a
fat tree network (see figure 6.9). The nodes of those networks have three phases, the spot load and the
generation capacity for each node are randomly determined. Figure 6.10 shows the average number
of iterations per network size (10 trials per network size).

0 1 ... N

Figure 6.8: Line network

0

1 2 ... N

Figure 6.9: Fat tree network

There are several observations to make. Firstly, we observe that for line networks, the number of
iterations increases especially as the network size increases. For fat tree networks, the trend is still
present but less obvious compared to line networks. We can conclude that the size of the network
isn’t necessarily the most important factor influencing the number of iterations. Indeed, even if the
fat tree network has the same size than the line network, the number of iterations is much smaller.
The diameter of the network (longest shortest path between any two nodes in the network) seems a
much more relevant factor when considering the number of iterations. Let’s suppose that the number
of iterations takes the linear form a· size + b· diameter. The parameters a = 14.508, b = 95.645
minimize the least square error for the data on figure 6.10. This shows that the diameter of the
network is a much more important factor than the network size to understand the variation of the
number of iterations from one network to another. This can be easily explained : In fact, the ADMM
method relies on the communication between the nodes of the network in order to find an agreement,
which corresponds to the global optimum. But when the network has a big diameter, the information
takes much more time to travel from one node to the others. hence the time to reach a consensus is
much longer.
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Figure 6.10: Evolution of the number of iterations for different network sizes
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6.4 Case Study : IEEE test feeders

Besides theoretical results, we would like to test the algorithm on real networks. The systems described
in [Ker01a], are real networks and were designed to evaluate and benchmark algorithms in solving
unbalanced three-phase radial systems1. The four networks used contain 13, 34, 37, and 123 buses
respectively. The IEEE13 test feeder operates at a nominal voltage of 4.16kV. The IEEE34 feeder
is located in Arizona and operates at a nominal voltage of 24.9kV. the IEEE37 feeder is located
in California and operates at a nominal voltage of 4.8kV. Finally, the IEEE123 has also a nominal
voltage of 4.8kVand is shown on figure 6.11. In order to apply our model to those networks some
simplifications have been made :

• Transformers are modelled as lines with appropriate impedances.

• The voltage of the regulators is assumed to be fixed at the nominal voltage.

• Circuit switches are considered open or short lines according to their status in the dataset.

• Distributed load on a line is split and considered as two identical loads at each end of the line.

The substation node is modelled as a fixed voltage bus with an infinite power injection for power bal-
ance. Each line in the network is characterised by a length and an impedance. Each bus is modelled
as a load bus whose voltage magnitude at each phase can vary within [0.95 1.05] (per unit) and the
spot loads are also specified (active and reactive power). There are no controllable devices in those
networks, hence the OPF problem degenerates to a power flow problem, which is easy to solve. In
order to demonstrate the effectiveness of the algorithm, we replace all the capacitors with inverters,
whose reactive power injection ranges form 0 to the maximum ratings specified by the original capac-
itors. The objective function consists in minimizing the total power loss over the whole network.

Figure 6.11: IEEE123 test feeder (California)

1source : https://ewh.ieee.org/soc/pes/dsacom/testfeeders/
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Table 6.2 summarises the results for the four networks. They have been obtained using the decentral-
ized solver with the intialization procedure and the dynamic update of the penalty parameter (initial
value of the penalty parameter : 3). We observe that the number of iterations is consistent with
the previous conclusion : the number of iterations is mainly driven by the diameter of the network.
Notice that three out of four of those networks get a rank-1 solution (the value of the ratio entry
is closed to zero). Meaning that the OPF relaxation is exact for those networks. These results are
confirmed by other studies showing the exactness of SDP relaxations on real networks, not just for
the IEEE test feeders [PL15], [GL14]. As far as the CPU time is concerned, we see that the proposed
algorithm always beats the CVX solver since we assumed a parallel implementation of the algorithm
(The average CPU time per iteration turns around 10−3s).

Network Diameter #Iter CPU time [s] CVX [s] value ratio
IEEE13 6 762 0.657 0.95 187.78 2.3 10−11

IEEE34 20 2512 2.121 4.78 −123.01 0.978
IEEE37 16 2302 2.001 4.71 332.59 8.2 10−9

IEEE123 30 4550 3.664 18.34 27.67 3.6 10−12

Table 6.2: Results of the simulation

6.5 Conclusion

In this chapter, we gave some numerical results proving the effectiveness of the proposed algorithm.
In particular, we showed that ADMM can be competitive with the best known methods even for a
small instance of the problem. When considering the number of iterations, the diameter of the network
seems to be a much more important factor than the size of the network. Finally, and quite fortunately,
the SDP relaxation of the OPF problem is apparently exact for three out of four the networks on which
the algorithm was applied.
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Extensions

In this section, some directions for future research are discussed. Especially, we show that battery
storages can be included in our model without rethinking the entire algorithm.

Integration of Battery Energy Storages

Two of the most popular forms of renewable generation, wind and photovoltaic face large fluctuations
in their generation profile. This variation means that peak generation and peak customer demand
are often greatly divergent. Battery energy storage can help to buffer wind and PV generation, by
capturing a portion of the energy produced during light load and exporting it back onto the network
as required. Even if the modelisation of battery energy storages is beyond the scope of this master
thesis, it’s interesting to know if such devices can be integrate in our model without rethinking the
entire algorithm. In the sequel, a modification of the OPF formulation is proposed in order to integrate
battery energy storages.

Battery storages force the problem to consider a new dimension, the time. Indeed, there can be several
variables associated with a battery, for example the battery level and the temperature. Those state
variables add a temporal dimension to the problem, and link the problems in time. Suppose, the spot
load and the spot price are available for each time t ∈ [1, 2, . . . T ], where [1, 2, . . . T ] is the time frame
considered. For each bus i ∈ N+, denote qt

i the battery level at time t. Then the power balance
constraints have to be modified to take into account the charge or the discharge of the batteries:

st
i + diag

∑
j∈Ci

Pi

(
St

j − zjl
t
j

) = diag
(
St

i

)
+ ξ

(
qt+1

i − qt
i

)
∀i ∈ N and t ∈ [1, . . . T − 1]

where ξ is a constant output factor, and the variable q1
i is given. Note that Ohm’s law doesn’t need

any modifications. There are also two technical constraints to consider. The first constraint is a ramp
rate constraint on the battery level:

R−
i ≤ q

t+1
i − qt

i ≤ R+
i ∀i ∈ N and t ∈ [1 . . . T − 1]

Meaning that the charge of the discharge of the battery between t and t+ 1 is limited by a ramp rate.
And the second constraint forces the battery level to be maintained within a given range [Q−

i , Q
+
i ]:

Q−
i ≤ q

t
i ≤ Q+

i ∀i ∈ N and t ∈ [1 . . . T ]

If there is no battery at bus i ∈ N , then Q−
i , Q

+
i = 0. Besides satisfying operational constraints, the

OPF problem consists in minimizing an objective function, f . Hereafter, we assume there exists for
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each node i ∈ N , a real-valued function f t
i (convex) defined on R which represents the local objective

of node i at time t. Moreover suppose that the value of the objective function at time t depends
exclusively on the net complex power injection st and the battery level at time t and t + 1. Indeed,
typical objective functions include cost generation or power loss which depend exclusively on the power
injection. But it can also include a cost for the charge and for the discharge of the battery. Then the
total objective function is given by :

f t
(
st, qt, qt+1

)
=
∑
i∈N

f t
i

(
st

i, q
t
i , q

t+1
i

)

The relaxation of the optimal power flow problem can be reformulated as :

min
T∑

t=0

∑
i∈N

f t
i

(
st

i, q
t
i , q

t+1
i

)
(6.1a)

over v, s, S, `, q

s.t. Pi(vt
Ai

) = vt
i −

(
ziS

t ∗
i + Siz

∗
i

)
+ zi`

t
iz

∗
i i ∈ N+, t ∈ [1 . . . T ] (6.1b)

st
i + diag

∑
j∈Ci
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(
St

j − zjl
t
j

) = diag
(
St

i

)
+ ξ

(
qt+1

i − qt
i

)
i ∈ N , t ∈ [1 . . . T ] (6.1c)

R−
i ≤ q

t+1
i − qt

i ≤ R+
i i ∈ N , t ∈ [1 . . . T − 1] (6.1d)

Q−
i ≤ q

t
i ≤ Q+

i i ∈ N , t ∈ [1 . . . T ] (6.1e)

vi ≤ vt
i ≤ vi i ∈ N , t ∈ [1 . . . T ] (6.1f)

st
i ∈ It

i i ∈ N , t ∈ [1 . . . T ] (6.1g) vt
i St

i

St ∗
i `ti

 � 0 i ∈ N , t ∈ [1 . . . T ] (6.1h)

We can see that the number of variables has been multiplied by T . However, our decentralized
algorithm can be applied with just minor changes. Note that the variable qi doesn’t need to be shared
with neighbours’s buses. Therefore, we only need to add the variables qt

i0 and qt
ii, in the x variables

and the y variables respectively, for each time t. The variables xi0 and yii change into:
xi0 :=

{
St

i0, `
t
i0, v

t
i0, s

t
i0, q

t
i0 ∀t ∈ [1 . . . T ]

}
yii :=

{
St

ii, `
t
ii, v

t
ii, s

t
ii, q

t
ii ∀t ∈ [1 . . . T ]

}

and we have to add the consensus constraint :

qt
i0 = qt

ii i ∈ N , t ∈ [1 . . . T ]

Let’s discuss in more details the modifications to operate in the x-update and the y-update in order
to apply our algoithm.

x-update Since the variables Si0, li0 and vi0 have no time-dependencies, the update of the variables
Si0, li0 and vi0 doesn’t change at all and can be split into T sub-problems for each bus i ∈ N . This
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gives us the following T sub-problems.

min ρ

2
(
|Ci|+ 2

) ∥∥∥∥∥∥
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 ∈ S+

where v̂t
i , Ŝ

t
i and ˆ̀t

i are some fixed parameters. This optimization problem can be solved using eigen-
decomposition of a 6× 6 matrix. On the opposite, due to the time-dependencies associated with the
battery levels, the second part of the x-update can’t be split into T sub-problems for each bus i and
the following problem must be solved:

min
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t=1
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st
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i ∀t ∈ [1 . . . T ]

Unfortunately, a closed-form solution is generally impossible to derive for such problem. Although it
could be possible to solve it efficiently using an industrial solver.

y-update The optimisation problem associated with the y-update is very similar except that the
number of variables has drastically increased. Indeed, since the problem cannot be spilt into T sub-
problems because of the time-depencies, all the variables yt

ii, yt
ij ∀j ∈ Ci and yt

Aii
are part of the

same optimisation problem. Fortunately, this optimization problem can still be reformulated under
the form :

min
z

1
2 z

TQz + cT z

s.t. Az = 0

Where z stacks the real and the imaginary parts of the variables
{
yt

ji, ∀j ∈ Ni, ∀t ∈ [1 . . . N ]
}

, and
where the constraint Az = 0 includes the power balance constraints and the Ohm’s Law. This problem
enjoys a closed-form solution, given by :

z =
(
Q−1AT

(
AQ−1AT

)−1
AQ−1 −Q−1

)
︸ ︷︷ ︸

M

c

Note that even if the number of variables has been multiplied by a factor T , the matrix M doesn’t
change from one iteration to another and so can be formed at the beginning of the iterative process.
This saves us the necessity to recompute at each iteration the matrix M . In the end, the resolution
of the y-update comes down to a simple multiplication between a square matrix and a vector.
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Conclusion In brief, the proposed algorithm can easily integrate battery storages at the expense
of a multiplication of the number of variables per node by the size of the time frame. Moreover,
whether the SDP relaxation of the OPF problem can be solved efficiently depends on the existence
of a closed-form solution or at least an efficient way to compute the x-update, which depends on the
local objective functions fi.

Local Stopping Criteria

The stopping criterion and the algorithm proposed to update the penalty parameter ρ require a global
coordination, due to the computation of the global primal and dual residuals at each iteration. Theo-
retically speaking, those residuals could be computed in a decentralised way, using for example gossip
algorithms [Sha09]. However such approach would requires many rounds of gossip between each iter-
ation, and so a significant increase of the runtime. This approach has therefore not been implemented
in this project. However, it could be interesting to investigate a method by which the stopping cri-
terion could be independently chosen by individual devices based only on local information such as
the primal and dual residuals of the node and its neighbours. In case of multistage programming,
another approach is to run the algorithm continuously without any stopping criteria. The devices
would iterate indefinitely until a given time, at which point they shift their moving horizon forward
one time step and rerun the algorithm for this new time frame.

Fast Alternating Direction Method of Multipliers

Compared to second-order methods that are able to achieve high accuracy via expensive iterations,
ADMM relies on low-complex iterations and can achieve a modest accuracy in tens of iterations. While
ADMM result in simple algorithms, they often perform poorly when high accuracy is required. Inspired
by Nesterovs scheme for accelerating gradient methods [Nes], great efforts have been devoted to
accelerating ADMM and attaining high accuracy in a reasonable number of iterations [GOSB14]. The
proposed method is simply ADMM with a predictor-corrector type acceleration step. This predictor-
corrector step is unfortunately stable only in the special case where the objective function is strongly
convex. The accelerated version can still be applied to weakly convex problems, but the stability must
be enforced using a restart rule. This restart rule relies on a combination of the primal and the dual
residual, which makes the method easy to implement. An interesting research would be to investigate
the potential application of this fast version of the ADMM method in order to reduce the rate of
convergence in practice.
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General Conclusion

In the first part of this master thesis, we gave a short review of the recent advances in convexification
methods for solving the optimal power flow problem for multiphase unbalanced distribution networks.
For the last five years, those methods have been intensively studied and proved to be very promising,
since they can be computed very efficiently. However, there are still theoretical issues regarding the
exactness of such relaxations for radial networks as well as for general mesh networks.

After having formulated a convex relaxation of the optimal power flow problem, we developed a dis-
tributed algorithm based on the alternating direction method of multiplier (ADMM). This method has
experienced a revival in recent years due to its applicability to optimization problems arising from "big
data" and image processing applications, and its relative ease with which it may be implemented in par-
allel. The alternating direction method of multipliers takes the form of a decomposition-coordination
procedure, in which the solutions to small local sub-problems are coordinated to find a solution to a
large global problem. In this context, We presented a fully decentralized method based on message
passing between buses, relying solely on peer to peer communication between buses that exchange
energy. The method is completely decentralized, and needs no global coordination other than syn-
chronizing iterations. At each iteration, every device passes simple messages to its network neighbours
and then solves a local optimization problem that minimizes the sum of its own objective function and
a simple regularization term that only depends on the messages it received from its network neighbours
in the previous iteration. Moreover, the problem structure has been exploited in such a way that the
subproblems are reduced to either a closed-form solution, or an eigen-decomposition of a hermitian
matrix, which significantly reduce the convergence time.

We then demonstrated, in the third part, the scalability of the distributed algorithm proposed by
testing it on some made-up networks as well as real multiphase distribution networks (IEEE test
feeders). To show the efficiency of the proposed algorithm, we also compared the computation time
of solving the decentralized algorithm with a popular optimization solver (CVX, see [GB14]), based
on a primal-dual interior point method. Subsequently, we run the algorithm on networks of different
topology to understand the factors that affect the convergence rate. We found out that the diameter
of the network seems to be the main factor driving the number of iterations, more than the size of
the distribution network. Preliminary simulations showed that the proposed convex relaxation of the
optimal power flow problem is exact for three out four of the IEEE test distribution systems.

Finally, we concluded on some possible extensions for future considerations.
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A | Developments

A.1 Proof of Theorem 2

Proof. Let Λ := diag(λi, 1 ≤ i ≤ n), denote the diagonal matrix containing the eigenvalues of the
matrix W , and let U := {ui, 1 ≤ i ≤ n} denote the unitary matrix containing the eigenvectors of W .
Since W ∈ Sn, U−1 = U∗ and W = UΛU∗. Then,

‖X −W‖22 = Tr
(
(X −W )∗(X −W )

)
= Tr

(
(X −W )(X −W )

)
= Tr

(
U∗(X −W )UU∗(X −W )U

)
= Tr

(
(U∗XU − Λ)(U∗XU − Λ)

)

Let’s define X̂ := U∗XU . Since X ∈ Sn
+, X̂ ∈ Sn

+. Then,

‖X −W‖22 =
n∑

i=1
(x̂ii − λi)2 +

∑
i 6=j

|x̂ij |

In order to minimize this quantity, x̂ij = 0 for i 6= j. And since x̂ii must be positive for 1 ≤ i ≤ n

(because X̂ ∈ Sn
+), we obtain:

x̂ii =

 λi for i : λi > 0

0 otherwise

which means X = UX̂U∗ = ∑
i:λi>0 λiuiu

∗
i .

A.2 Development of the objective function in the x-update

The objective function associated with the x-update can be developed in term of each variable
{Si0, li0, vi0, si0}, such that

Hi0(xi0) = H
(1)
i0 (Si0) +H

(2)
i0 (`i0) +H

(3)
i0 (vi0) +H

(4)
i0 (si0)

In that case, those functions can be expressed by :
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H
(1)
i0 (Si0) =

∑
j∈Ni

(〈
µ

(1)
ij , Si0

〉
+ ρ

2
∥∥Si0 − Sij

∥∥2
Mij

)

=
〈
µ

(1)
ii , Si0

〉
+ ρ

2
(
2|Ci|+ 3

)
‖Si0 − Sii‖22 +

〈
µ

(1)
iAi
, Si0

〉
+
∥∥Si0 − SiAi

∥∥2
2

=
〈
µ

(1)
ii , Si0

〉
+ ρ

2
(
2|Ci|+ 3

) (
‖Si0‖22 − 2 〈Si0, Sii〉

)
+
〈
µ

(1)
iAi
, Si0

〉
+ ρ

2
(
‖Si0‖22 − 2

〈
Si0, SiAi

〉)
= 2 ρ2

(
|Ci|+ 2

)
‖Si0‖22 − ρ

〈
Si0,

(
2|Ci|+ 3

)
Sii + SiAi −

µ
(1)
ii + µ

(1)
iAi

ρ

〉

= 2 ρ2
(
|Ci|+ 2

)

‖Si0‖22 − 2

〈
Si0,

1
2(|Ci|+ 2)

(2|Ci|+ 3
)
Sii + SiAi −

µ
(1)
ii + µ

(1)
iAi

ρ


︸ ︷︷ ︸

Ŝi

〉


= 2 ρ

2
(
|Ci|+ 2

) ∥∥∥Si0 − Ŝi

∥∥∥2

2

H
(2)
i0 (`i0) =

∑
j∈Ni

(〈
µ

(2)
ij , `i0

〉
+ ρ

2
∥∥`i0 − `ij∥∥2

Mij

)

=
〈
µ

(2)
ii , `ii

〉
+ ρ

2
(
|Ci|+ 1

)
‖`i0 − `ii‖22 +

〈
µ

(2)
iAi
, `i0

〉
+ ρ

2
∥∥`i0 − `iAi

∥∥2
2

=
〈
µ

(2)
ii , `ii

〉
+ ρ

2
(
|Ci|+ 1

) (
‖`i0‖22 − 2 〈`i0, `ii〉

)
+
〈
µ

(2)
iAi
, `i0

〉
+ ρ

2
(
‖`i0‖22 − 2

〈
`i0, `iAi

〉)

= ρ

2
(
|Ci|+ 2

)

‖`i0‖22 − 2

〈
`i0,

1
|Ci|+ 2

(|Ci|+ 1)`ii + `iAi −
µ

(2)
ii + µ

(2)
iAi

ρ


︸ ︷︷ ︸

ˆ̀
i

〉


= ρ

2
(
|Ci|+ 2

) ∥∥∥`i0 − ˆ̀
i

∥∥∥2

2

H
(3)
i0 (vi0) =

∑
j∈Ni

(〈
µ

(3)
ij , vi0

〉
+ ρ

2
∥∥vi0 − vij

∥∥2
Mij

)

=
〈
µ

(3)
ii , vi0

〉
+ 2 ρ2‖vi0 − vii‖22 +

∑
j∈Ci

〈
µ

(3)
ij , vi0

〉
+ ρ

2
∥∥vi0 − vij

∥∥2
2

=
〈
µ

(3)
ii , vi0

〉
+ 2 ρ2

(
〈vi0, vi0〉 − 2 〈vi0, vii〉

)
+
∑
j∈Ci

〈
µ

(3)
ij , vi0

〉
+ ρ

2
(
〈vi0, vi0〉 − 2

〈
vi0, vij

〉)

= ρ

2
(
|Ci|+ 2

)
〈vi0, vi0〉+

〈
vi0, µ

(3)
ii +

∑
j∈Ci

µ
(3)
ij

〉
− 2 ρ2

〈
vi0, 2vii +

∑
j∈Ci

vij

〉

= ρ

2
(
|Ci|+ 2

)
〈vi0, vi0〉 − 2

〈
vi0,

1
|Ci|+ 2

2vii +
∑
j∈Ci

vij −
µ

(3)
ii +∑

j∈Ci
µ

(3)
ij

ρ


︸ ︷︷ ︸

v̂i

〉


= ρ

2
(
|Ci|+ 2

)
‖vi0 − v̂i‖22
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H
(4)
i0 (si0) = fi0(si0) +

∑
j∈Ni

(〈
µ

(4)
ij , si0

〉
+ ρ

2
∥∥si0 − sij

∥∥2
Mij

)

= fi0(si0) +
〈
µ

(4)
ii , si0

〉
+ ‖si0 − sii‖22

= fi0(si0) +
〈
µ

(4)
ii , si0

〉
+ ρ

2
(
〈si0, si0〉 − 2 〈si0, sii〉

)

= fi0(si0)ρ2

〈si0, si0〉 − 2
〈
si0, sii −

µ
(4)
ii

ρ︸ ︷︷ ︸
ŝi

〉
= fi0(si0) + ρ

2‖si0 − ŝi‖22

A.3 Development of the objective function in the y-update

We can decomposed the objective function in the y-update according to each variable contained in y :

G
(1)
i (Sii) = −

〈
µ

(1)
ii , Sii

〉
+ ρ

2
(
2|Ci|+ 3

) ∥∥∥S+
i0 − Sii

∥∥∥2

2

= ρ

2
(
2|Ci|+ 3

)
〈Sii, Sii〉 −

〈
Sii, µ

(1)
ii + ρ

(
2|Ci|+ 3

)
S+

i0

〉
G

(2)
i (`ii) = −

〈
µ

(2)
ii , `ii

〉
+ ρ

2
(
|Ci|+ 1

) ∥∥∥`+i0 − `ii∥∥∥2

2

= ρ

2
(
|Ci|+ 1

)
〈`ii, `ii〉 −

〈
`ii, µ

(2)
ii + ρ

(
|Ci|+ 1

)
`+i0

〉
G

(3)
i (vii) = −〈λi1, vii〉+ ρ

2
∥∥∥v+

i1 − vii

∥∥∥2

2
−
〈
µ

(3)
ii , vii

〉
+ 2 ρ2

∥∥∥v+
i0 − vii

∥∥∥2

2

= 3 ρ2 〈vii, vii〉 −
〈
vii, λi1 + µ

(3)
ii + ρv+

i1 + 2ρv+
i0

〉
G

(4)
i (sii) = −

〈
µ

(4)
ii , sii

〉
+ ρ

2
∥∥∥s+

i0 − sii

∥∥∥2

2

= ρ

2 〈sii, sii〉 −
〈
sii, µ

(4)
ii + ρs+

i0

〉
G

(5,j)
i

(
Sji
)

= −
〈
µ

(1)
ji , Sji

〉
+ ρ

2
∥∥∥S+

j0 − Sji

∥∥∥2

2

= ρ

2
〈
Sji, Sji

〉
−
〈
Sji, µ

(1)
ji + ρS+

j0

〉
G

(6,j)
i

(
`ji
)

= −
〈
µ

(2)
ji , `ji

〉
+ ρ

2
∥∥∥`+j0 − `ji

∥∥∥2

2

= ρ

2
〈
`ji, `ji

〉
−
〈
`ji, µ

(2)
ji + ρ`+j0

〉
G

(6,j)
i

(
vAii

)
= −

〈
µ

(3)
Aii
, vAii

〉
+ ρ

2
∥∥∥v+

Ai0 − vAii

∥∥∥2

2

= ρ

2
〈
vAii, vAii

〉
−
〈
vAii, µ

(3)
Aii

+ ρv+
Ai0

〉
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A.4 Impedance associated with the test network

z1 =


1.9 + 1.87i 0.456 + 0.24i 0.34 + 0.167i

· 1.34 + 1.325i 0.023 + 0.0067i

· · 1.576 + 1.234i



z2 =


1.67 + 1.87i 0.46 + 0.024i 0

· 2.43 + 1.844i 0

· · 0



z3 =


0 0 0

· 0 0

· · 2.37 + 1.87i



A.5 Solution for the test network

Node Active Power (W) Reactive Power (VAR)
Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

0 3.55 1.52 0.37 0.108 3.24 -0.39
1 -3.1 -2 -0.095 -0.1 -0.23 0.4
2 -0.45 0.49 0 0 -3 0
3 0 0 -0.28 0 0 0

Table A.1: Net Complex Power Injection

Active Power (W) Reactive Power (VAR)
Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

Ph1 -3.5499 3.5613 0.53335 -0.10031 0.29592 0.12377
Ph2 1.6795 -1.5155 -0.15803 3.1295 -3.2367 -0.52427

N
od

e
1

Ph3 1.8727 -2.0479 -0.37555 3.0259 2.9374 0.39994
Ph1 -0.45 2.3684 · 0 1.9149 ·
Ph2 0.22199 0.49341 · 0.39052 -3 ·

N
od

e
2

Ph3 · · · · · ·
Ph1 · · · · · ·
Ph2 · · · · · ·

N
od

e
3

Ph3 · · -0.28 · · 0

Table A.2: Complex branch power
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Node Voltage (V) Current (A)
Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

0 50∠0 50∠-120 50 ∠120 · · ·
1 49.89∠0 49.9 ∠-119.8 50 ∠120.13 0.0711 ∠178.38 0.072 ∠-4.74 0.109 ∠-13.06
2 49.9∠0 49.82∠-119.6 · 0.009 ∠180 0.061 ∠- 38.96 ·
3 · · 49.98 ∠120.17 · · 0.038 ∠-14.75

Table A.3: Complex voltage and complex current
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