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Subgradient of a function

7 is a subgradient of g (not necessarily convex) at u if

g(w) > g(u) + " (w — u) for all w

g(u)

g(ur) + mo(u —ur)

uy u

w1 IS a subgradient at uq; mo, 3 are subgradients at u»

The subgradient is a generalization of ...?
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@ 7 is a subgradient iff g(u) + =" (w — u) is a global (affine)
underestimator of g
@ If g is convex and differentiable, Vg(u) is a subgradient of
gatu
Subgradients come up in two types of algorithms that we will
study
@ Dual decomposition

@ L-shaped method and extensions

(If g(w) < g(u) + 7T (w — u) for all w, then 7 is a supergradient)



g = max{gy, g»} with gy, g> convex and differentiable

Uo

@ g1(up) > go(Up): unique subgradient 7 = Vg (Up)
@ go(Up) > g1(Up): unique subgradient 7 = Vgo(Up)
@ g1(up) = 92(Up): subgradients form a line segment

[Vgi(Uo, Vga(lo))]



Subdifferential

@ Set of all subgradients of g at u is called the
subdifferential of g at u, denoted 0g(u)

@ Jg(u) is a closed convex set

If g is convex
@ Jg(u) is nonempty, for u € relint dom g
@ Jdg(u) = {Vg(u)}, if g is differentiable at u
@ If dg(u) = {r}, then g is differentiable at v and = = Vg(u)



g(u) = lu|

g(u) = |u| ag(u)

Right hand plot shows U{(u, Vg(u))|u € R}
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Some Basic Rules

Suppose g is convex
@ Jdg(u) = {Vg(u)} if g is differentiable at u
@ Scaling: d(ag) = adg
@ Addition: (g1 + g2) = 9g1 + 99- (RHS is addition of sets)
@ Affine transformation of variables: if f(u) = g(Au + b), then
of(u) = ATog(Au + b)

@ Finite point wise maximum: if g = max;,—1_._m gi, then

.....

d9(u) = Co U {0gj(u)lgi(u) = g(u)}

i.e. convex hull of union of subdifferentials of ‘active’
functions at u
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Consider g(u) = |ul, note that

99(0) = Co({-1}yu {1}) = [-1,1]
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Optimality Conditions - Unconstrained

Recall for g convex, differentiable,
g(u") =infg(u) < 0 = Vg(u’)
Generalization to non-differentiable convex g
g(u”) = infg(u) < 0 € 9g(u")

Proof. By definition

g(w) > g(u*) +0"(w — u*) for all w < 0 € dg(u*)
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Parametrizing the Right-Hand Side

Define c¢(u) as optimal value of

c(u) = min fo(x)

ilx)<uji=1,....m

where x € dom fy and fy, f; are convex functions

@ c(u) is convex

@ Suppose strong duality holds and denote \* as the
maximizer of the dual function

inf (fo(x) = AT(f(x) — u))

xedom fy

for A < 0. Then \* € dc(u).

A
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Graphical lllustration

Uo
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Proof: c(u) Is Convex

@ Consider any uy, us, denote xi, Xo as the respective
optimal solutions.

@ Consider any a € [0, 1] and denote x; as the optimal
solution when au; + (1 — a)u» is used as input

@ Convexity of f = f(axy + (1 — a)xe) < auy + (1 — a)up
(since f(x1) < uy and f(x2) < Uo)

@ Convexity of dom fy = ax; + (1 — a)xz is admissible when
auy + (1 — a)up is used as input

@ Optimality of x, with respect to au; + (1 — a)u, =
fo(xa) < fo(axs + (1 — a)xo)

@ Convexity of fy =
claus + (1 — a)up) < ac(ur) + (1 — a)c(up)
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Proof: \* Is a Subgradient

@ Denote x as the optimal solution for u

@ Denote x* € argminycgom (fH(x) — (M) T (f(x) — u))

c(u) = fi(x*) — (\)T(f(x*) —u) < strong duality

fo(x) — (AT (F(x) — u) = definition of x*
fo(X) — (W)T(F(X) —T) = (W) (T~ u) <
(X)) — (W) (0 —u) = since f(x) < T, \* <0

)
c(t) — (M) (T - u) definition of x
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Example: The Diet Problem

Problem: Choose 3 dishes (x1, X2, X3) SO as to satisfy nutrient
requirements by and bo, while minimizing cost (dishes cost 1 $,
2 $, and 1 $ respectively)

Table: The unit of nutrients in each dish.

Dish1 Dish2 Dish3
Nutrient 1 0.5 4 1
Nutrient 2 2 1 2

z(b)= min Xx1+2x2+ X3
s.t. 05Xy +4x0 + X3 = by
2Xy + Xo + 2X3 = bo
X1,Xo, X3 >0
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If b > 0, then (we showed this in the previous lecture)

+00, b> > 4b;
2(b) 0.5bs, 2by < by < 4b
0.4286b1 + 0.2857b,, 0.25b1 < b, < 2by
+00, bo < 0.25b;4

This is a convex function
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Sensitivity

Corollary of previous proposition: if c(u) is differentiable at u,
then \* = Ve(u)

= ); is equal to the sensitivity of c¢(u) to a marginal change in
the right-hand-side of the constraint corresponding to \;
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Example: The Diet Problem - Sensitivity

Consider the diet problem with by =1 and b, = 1

Show that 77 = 0.4286 and 75 = 0.2857 are dual optimal (we
used KKT conditions)

Sensitivity interpretation of 7j: if by = 1 + ¢, optimal cost z
increases by 0.4286¢

Proof: For by =1 + ¢,
x* =(0,0.1429 + 0.2857¢,0.4286 — 0.1429¢) = cost change
equals 2 - 0.2857¢ — 1 - 0.1429¢ = 0.4286¢

Note: Expressing equality constraints as —h(x) = 0 gives
(—0.4286, —0.2857), note the change in sign of =*
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Sign of Dual Multipliers

Dual optimal multiplier may be equal to
@ sensitivity, or
@ minus the sensitivity

of objective function f(x) to change in right hand side of
fi(x) <0

Sensitivity depends on how Lagrangian function is defined:
@ If L(x,\) = fo(x) — \; - fi(x) then then X is equal to
sensitivity
@ If L(x,\) = fo(x) + A; - fi(x) then X equals minus sensitivity

Same idea applies for hj(x) =0
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