Subgradients

Operations Research

Anthony Papavasiliou

Contents

(1) Subgradients
(2) Useful Results

Table of Contents

(1) Subgradients

2 Useful Results

Subgradient of a function

π is a subgradient of g (not necessarily convex) at u if

$$
g(w) \geq g(u)+\pi^{T}(w-u) \text { for all } w
$$

π_{1} is a subgradient at $u_{1} ; \pi_{2}, \pi_{3}$ are subgradients at u_{2}
The subgradient is a generalization of ...?

- π is a subgradient iff $g(u)+\pi^{T}(w-u)$ is a global (affine) underestimator of g
- If g is convex and differentiable, $\nabla g(u)$ is a subgradient of g at u

Subgradients come up in two types of algorithms that we will study

- Dual decomposition
- L-shaped method and extensions
(If $g(w) \leq g(u)+\pi^{T}(w-u)$ for all w, then π is a supergradient)

Example

$g=\max \left\{g_{1}, g_{2}\right\}$ with g_{1}, g_{2} convex and differentiable

- $g_{1}\left(u_{0}\right)>g_{2}\left(u_{0}\right)$: unique subgradient $\pi=\nabla g_{1}\left(u_{0}\right)$
- $g_{2}\left(u_{0}\right)>g_{1}\left(u_{0}\right)$: unique subgradient $\pi=\nabla g_{2}\left(u_{0}\right)$
- $g_{1}\left(u_{0}\right)=g_{2}\left(u_{0}\right)$: subgradients form a line segment $\left[\nabla g_{1}\left(u_{0}, \nabla g_{2}\left(u_{0}\right)\right)\right]$

Subdifferential

- Set of all subgradients of g at u is called the subdifferential of g at u, denoted $\partial g(u)$
- $\partial g(u)$ is a closed convex set

If g is convex

- $\partial g(u)$ is nonempty, for $u \in$ relint dom g
- $\partial g(u)=\{\nabla g(u)\}$, if g is differentiable at u
- If $\partial g(u)=\{\pi\}$, then g is differentiable at u and $\pi=\nabla g(u)$

Example

$$
g(u)=|u|
$$

$$
g(u)=|u|
$$

Right hand plot shows $\cup\{(u, \nabla g(u)) \mid u \in \mathbb{R}\}$

Table of Contents

(1) Subgradients

(2) Useful Results

Some Basic Rules

Suppose g is convex

- $\partial g(u)=\{\nabla g(u)\}$ if g is differentiable at u
- Scaling: $\partial(a g)=a \partial g$
- Addition: $\partial\left(g_{1}+g_{2}\right)=\partial g_{1}+\partial g_{2}$ (RHS is addition of sets)
- Affine transformation of variables: if $f(u)=g(A u+b)$, then $\partial f(u)=A^{T} \partial g(A u+b)$
- Finite point wise maximum: if $g=\max _{i=1, \ldots, m} g_{i}$, then

$$
\partial g(u)=\operatorname{Co} \cup\left\{\partial g_{i}(u) \mid g_{i}(u)=g(u)\right\}
$$

i.e. convex hull of union of subdifferentials of 'active' functions at u

Example

Consider $g(u)=|u|$, note that

$$
\partial g(0)=\operatorname{Co}(\{-1\} \cup\{1\})=[-1,1]
$$

Optimality Conditions - Unconstrained

Recall for g convex, differentiable,

$$
g\left(u^{\star}\right)=\inf _{u} g(u) \Leftrightarrow 0=\nabla g\left(u^{\star}\right)
$$

Generalization to non-differentiable convex g

$$
g\left(u^{\star}\right)=\inf _{u} g(u) \Leftrightarrow 0 \in \partial g\left(u^{\star}\right)
$$

Proof. By definition

$$
g(w) \geq g\left(u^{\star}\right)+0^{T}\left(w-u^{\star}\right) \text { for all } w \Leftrightarrow 0 \in \partial g\left(u^{\star}\right)
$$

Example

Parametrizing the Right-Hand Side

Define $c(u)$ as optimal value of

$$
\begin{aligned}
& c(u)=\min f_{0}(x) \\
& f_{i}(x) \leq u_{i}, i=1, \ldots, m
\end{aligned}
$$

where $x \in \operatorname{dom} f_{0}$ and f_{0}, f_{i} are convex functions

- $c(u)$ is convex
- Suppose strong duality holds and denote λ^{\star} as the maximizer of the dual function

$$
\inf _{x \in \operatorname{dom} f_{0}}\left(f_{0}(x)-\lambda^{T}(f(x)-u)\right)
$$

for $\lambda \leq 0$. Then $\lambda^{\star} \in \partial c(u)$.

Graphical Illustration

Proof: $c(u)$ Is Convex

- Consider any u_{1}, u_{2}, denote x_{1}, x_{2} as the respective optimal solutions.
- Consider any $a \in[0,1]$ and denote x_{a} as the optimal solution when $a u_{1}+(1-a) u_{2}$ is used as input
- Convexity of $f \Rightarrow f\left(a x_{1}+(1-a) x_{2}\right) \leq a u_{1}+(1-a) u_{2}$ (since $f\left(x_{1}\right) \leq u_{1}$ and $\left.f\left(x_{2}\right) \leq u_{2}\right)$
- Convexity of dom $f_{0} \Rightarrow a x_{1}+(1-a) x_{2}$ is admissible when $a u_{1}+(1-a) u_{2}$ is used as input
- Optimality of x_{a} with respect to $a u_{1}+(1-a) u_{2} \Rightarrow$ $f_{0}\left(x_{a}\right) \leq f_{0}\left(a x_{1}+(1-a) x_{2}\right)$
- Convexity of $f_{0} \Rightarrow$

$$
c\left(a u_{1}+(1-a) u_{2}\right) \leq a c\left(u_{1}\right)+(1-a) c\left(u_{2}\right)
$$

Proof: λ^{\star} Is a Subgradient

- Denote \bar{x} as the optimal solution for \bar{u}
- Denote $x^{\star} \in \arg \min _{x \in \operatorname{dom}}\left(f_{0}(x)-\left(\lambda^{\star}\right)^{T}(f(x)-u)\right)$

$$
\begin{array}{cl}
c(u)=f_{0}\left(x^{\star}\right)-\left(\lambda^{\star}\right)^{T}\left(f\left(x^{\star}\right)-u\right) \leq & \text { strong duality } \\
f_{0}(\bar{x})-\left(\lambda^{\star}\right)^{T}(f(\bar{x})-u)= & \text { definition of } x^{\star} \\
f_{0}(\bar{x})-\left(\lambda^{\star}\right)^{T}(f(\bar{x})-\bar{u})-\left(\lambda^{\star}\right)^{T}(\bar{u}-u) \leq & \\
f_{0}(\bar{x})-\left(\lambda^{\star}\right)^{T}(\bar{u}-u)= & \text { since } f(\bar{x}) \leq \bar{u}, \lambda^{\star} \leq 0 \\
c(\bar{u})-\left(\lambda^{\star}\right)^{T}(\bar{u}-u) & \text { definition of } \bar{x}
\end{array}
$$

Example: The Diet Problem

Problem: Choose 3 dishes (x_{1}, x_{2}, x_{3}) so as to satisfy nutrient requirements b_{1} and b_{2}, while minimizing cost (dishes cost $1 \$$, $2 \$$, and $1 \$$ respectively)

Table: The unit of nutrients in each dish.

	Dish 1	Dish 2	Dish 3
Nutrient 1	0.5	4	1
Nutrient 2	2	1	2

$$
\begin{array}{ll}
z(b)=\min & x_{1}+2 x_{2}+x_{3} \\
\text { s.t. } & 0.5 x_{1}+4 x_{2}+x_{3}=b_{1} \\
& 2 x_{1}+x_{2}+2 x_{3}=b_{2} \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

If $b \geq 0$, then (we showed this in the previous lecture)

$$
z(b)=\left\{\begin{array}{cc}
+\infty, & b_{2}>4 b_{1} \\
0.5 b_{2}, & 2 b_{1} \leq b_{2} \leq 4 b_{1} \\
0.4286 b_{1}+0.2857 b_{2}, & 0.25 b_{1} \leq b_{2} \leq 2 b_{1} \\
+\infty, & b_{2}<0.25 b_{1}
\end{array}\right.
$$

This is a convex function

Sensitivity

Corollary of previous proposition: if $c(u)$ is differentiable at u, then $\lambda^{\star}=\nabla c(u)$
$\Rightarrow \lambda_{i}$ is equal to the sensitivity of $c(u)$ to a marginal change in the right-hand-side of the constraint corresponding to λ_{i}

Example: The Diet Problem - Sensitivity

Consider the diet problem with $b_{1}=1$ and $b_{2}=1$

Show that $\pi_{1}^{\star}=0.4286$ and $\pi_{2}^{\star}=0.2857$ are dual optimal (we used KKT conditions)

Sensitivity interpretation of π_{1}^{\star} : if $b_{1}=1+\epsilon$, optimal cost z increases by 0.4286ϵ

Proof: For $b_{1}=1+\epsilon$,
$x^{\star}=(0,0.1429+0.2857 \epsilon, 0.4286-0.1429 \epsilon) \Rightarrow$ cost change equals $2 \cdot 0.2857 \epsilon-1 \cdot 0.1429 \epsilon=0.4286 \epsilon$

Note: Expressing equality constraints as $-h(x)=0$ gives $(-0.4286,-0.2857)$, note the change in sign of π^{\star}

Sign of Dual Multipliers

Dual optimal multiplier may be equal to

- sensitivity, or
- minus the sensitivity
of objective function $f_{0}(x)$ to change in right hand side of $f_{i}(x) \leq 0$

Sensitivity depends on how Lagrangian function is defined:

- If $L(x, \lambda)=f_{0}(x)-\lambda_{i} \cdot f_{i}(x)$ then then λ is equal to sensitivity
- If $L(x, \lambda)=f_{0}(x)+\lambda_{i} \cdot f_{i}(x)$ then λ equals minus sensitivity

Same idea applies for $h_{i}(x)=0$

