Subgradients Operations Research

Anthony Papavasiliou

Subgradient of a function

 π is a subgradient of g (not necessarily convex) at u if

$$g(w) \geq g(u) + \pi^{\mathsf{T}}(w-u)$$
 for all w

 π_1 is a subgradient at u_1 ; π_2 , π_3 are subgradients at u_2

The subgradient is a generalization of ...?

- π is a subgradient iff $g(u) + \pi^T(w u)$ is a global (affine) underestimator of g
- If g is convex and differentiable, ∇g(u) is a subgradient of g at u

Subgradients come up in two types of algorithms that we will study

- Dual decomposition
- L-shaped method and extensions

(If $g(w) \le g(u) + \pi^T(w - u)$ for all w, then π is a supergradient)

Example

 $g = \max\{g_1, g_2\}$ with g_1, g_2 convex and differentiable

- $g_1(u_0) > g_2(u_0)$: unique subgradient $\pi = \nabla g_1(u_0)$
- $g_2(u_0) > g_1(u_0)$: unique subgradient $\pi = \nabla g_2(u_0)$
- $g_1(u_0) = g_2(u_0)$: subgradients form a line segment $[\nabla g_1(u_0, \nabla g_2(u_0))]$

- Set of all subgradients of g at u is called the subdifferential of g at u, denoted ∂g(u)
- $\partial g(u)$ is a closed convex set

If g is convex

- $\partial g(u)$ is nonempty, for $u \in$ relint dom g
- $\partial g(u) = \{\nabla g(u)\}$, if g is differentiable at u
- If $\partial g(u) = \{\pi\}$, then g is differentiable at u and $\pi = \nabla g(u)$

g(u) = |u|

Right hand plot shows $\cup \{(u, \nabla g(u)) | u \in \mathbb{R}\}$

Suppose g is convex

- $\partial g(u) = \{\nabla g(u)\}$ if g is differentiable at u
- Scaling: $\partial(ag) = a\partial g$
- Addition: $\partial(g_1 + g_2) = \partial g_1 + \partial g_2$ (RHS is addition of sets)
- Affine transformation of variables: if f(u) = g(Au + b), then $\partial f(u) = A^T \partial g(Au + b)$
- Finite point wise maximum: if $g = \max_{i=1,...,m} g_i$, then

$$\partial g(u) = \mathsf{Co} \cup \{\partial g_i(u) | g_i(u) = g(u)\}$$

i.e. convex hull of union of subdifferentials of 'active' functions at *u*

Example

Consider g(u) = |u|, note that

$$\partial g(0) = \operatorname{Co}(\{-1\} \cup \{1\}) = [-1, 1]$$

・・・・<
 ・・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Optimality Conditions - Unconstrained

Recall for g convex, differentiable,

$$g(u^{\star}) = \inf_{u} g(u) \Leftrightarrow 0 = \nabla g(u^{\star})$$

Generalization to non-differentiable convex g

$$g(u^{\star}) = \inf_{u} g(u) \Leftrightarrow 0 \in \partial g(u^{\star})$$

Proof. By definition

$$g(w) \geq g(u^{\star}) + 0^{T}(w - u^{\star})$$
 for all $w \Leftrightarrow 0 \in \partial g(u^{\star})$

Parametrizing the Right-Hand Side

Define c(u) as optimal value of

 $c(u) = \min f_0(x)$ $f_i(x) \le u_i, i = 1, \dots, m$

where $x \in \text{dom } f_0$ and f_0, f_i are convex functions

- c(u) is convex
- Suppose strong duality holds and denote λ* as the maximizer of the dual function

$$\inf_{x\in \text{dom } f_0}(f_0(x)-\lambda^T(f(x)-u))$$

for $\lambda \leq 0$. Then $\lambda^* \in \partial c(u)$.

Graphical Illustration

Proof: c(u) Is Convex

- Consider any u₁, u₂, denote x₁, x₂ as the respective optimal solutions.
- Consider any *a* ∈ [0, 1] and denote *x_a* as the optimal solution when *au*₁ + (1 − *a*)*u*₂ is used as input

- Convexity of $f \Rightarrow f(ax_1 + (1 a)x_2) \le au_1 + (1 a)u_2$ (since $f(x_1) \le u_1$ and $f(x_2) \le u_2$)
- Convexity of dom $f_0 \Rightarrow ax_1 + (1 a)x_2$ is admissible when $au_1 + (1 a)u_2$ is used as input
- Optimality of x_a with respect to $au_1 + (1 a)u_2 \Rightarrow f_0(x_a) \le f_0(ax_1 + (1 a)x_2)$
- Convexity of $f_0 \Rightarrow$ $c(au_1 + (1 - a)u_2) \le ac(u_1) + (1 - a)c(u_2)$

Proof: λ^* Is a Subgradient

- Denote x
 as the optimal solution for u
- Denote $x^* \in \arg\min_{x \in \text{dom}} (f_0(x) (\lambda^*)^T (f(x) u))$

$$\begin{split} c(u) &= f_0(x^*) - (\lambda^*)^T (f(x^*) - u) \leq & \text{strong duality} \\ f_0(\bar{x}) - (\lambda^*)^T (f(\bar{x}) - u) = & \text{definition of } x^* \\ f_0(\bar{x}) - (\lambda^*)^T (f(\bar{x}) - \bar{u}) - (\lambda^*)^T (\bar{u} - u) \leq & \\ & f_0(\bar{x}) - (\lambda^*)^T (\bar{u} - u) = & \text{since } f(\bar{x}) \leq \bar{u}, \, \lambda^* \leq 0 \\ & c(\bar{u}) - (\lambda^*)^T (\bar{u} - u) & \text{definition of } \bar{x} \end{split}$$

Example: The Diet Problem

Problem: Choose 3 dishes (x_1 , x_2 , x_3) so as to satisfy nutrient requirements b_1 and b_2 , while minimizing cost (dishes cost 1 \$, 2 \$, and 1 \$ respectively)

	Dish 1	Dish 2	Dish 3
Nutrient 1	0.5	4	1
Nutrient 2	2	1	2

Table: The unit of nutrients in each dish.

$$z(b) = \min x_1 + 2x_2 + x_3$$

s.t. $0.5x_1 + 4x_2 + x_3 = b_1$
 $2x_1 + x_2 + 2x_3 = b_2$
 $x_1, x_2, x_3 \ge 0$

If $b \ge 0$, then (we showed this in the previous lecture)

$$z(b) = \left\{egin{array}{ccc} +\infty, & b_2 > 4b_1 \ 0.5b_2, & 2b_1 \leq b_2 \leq 4b_1 \ 0.4286b_1 + 0.2857b_2, & 0.25b_1 \leq b_2 \leq 2b_1 \ +\infty, & b_2 < 0.25b_1 \end{array}
ight.$$

This is a convex function

Corollary of previous proposition: if c(u) is differentiable at u, then $\lambda^* = \nabla c(u)$

 $\Rightarrow \lambda_i$ is equal to the *sensitivity* of c(u) to a marginal change in the right-hand-side of the constraint corresponding to λ_i

Example: The Diet Problem - Sensitivity

Consider the diet problem with $b_1 = 1$ and $b_2 = 1$

Show that $\pi_1^{\star} = 0.4286$ and $\pi_2^{\star} = 0.2857$ are dual optimal (we used KKT conditions)

Sensitivity interpretation of π_1^* : if $b_1 = 1 + \epsilon$, optimal cost *z* increases by 0.4286 ϵ

Proof: For $b_1 = 1 + \epsilon$, $x^* = (0, 0.1429 + 0.2857\epsilon, 0.4286 - 0.1429\epsilon) \Rightarrow \text{cost change}$ equals $2 \cdot 0.2857\epsilon - 1 \cdot 0.1429\epsilon = 0.4286\epsilon$

Note: Expressing equality constraints as -h(x) = 0 gives (-0.4286, -0.2857), note the change in sign of π^*

Dual optimal multiplier may be equal to

- sensitivity, or
- minus the sensitivity

of objective function $f_0(x)$ to change in right hand side of $f_i(x) \leq 0$

Sensitivity depends on how Lagrangian function is defined:

- If L(x, λ) = f₀(x) − λ_i · f_i(x) then then λ is equal to sensitivity
- If $L(x, \lambda) = f_0(x) + \lambda_i \cdot f_i(x)$ then λ equals minus sensitivity

Same idea applies for $h_i(x) = 0$