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Subgradient of a function

π is a subgradient of g (not necessarily convex) at u if

g(w) ≥ g(u) + πT (w − u) for all w

π1 is a subgradient at u1; π2, π3 are subgradients at u2

The subgradient is a generalization of ...?
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π is a subgradient iff g(u) + πT (w − u) is a global (affine)
underestimator of g

If g is convex and differentiable, ∇g(u) is a subgradient of
g at u

Subgradients come up in two types of algorithms that we will
study

Dual decomposition

L-shaped method and extensions

(If g(w) ≤ g(u) + πT (w − u) for all w , then π is a supergradient)
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Example

g = max{g1,g2} with g1,g2 convex and differentiable

u0

g1(u)

g(u)

g2(u)

g1(u0) > g2(u0): unique subgradient π = ∇g1(u0)

g2(u0) > g1(u0): unique subgradient π = ∇g2(u0)

g1(u0) = g2(u0): subgradients form a line segment
[∇g1(u0,∇g2(u0))]
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Subdifferential

Set of all subgradients of g at u is called the
subdifferential of g at u, denoted ∂g(u)

∂g(u) is a closed convex set

If g is convex

∂g(u) is nonempty, for u ∈ relint dom g

∂g(u) = {∇g(u)}, if g is differentiable at u

If ∂g(u) = {π}, then g is differentiable at u and π = ∇g(u)
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Example

g(u) = |u|

g(u) = |u| ∂g(u)

u u

Right hand plot shows ∪{(u,∇g(u))|u ∈ R}
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Some Basic Rules

Suppose g is convex

∂g(u) = {∇g(u)} if g is differentiable at u

Scaling: ∂(ag) = a∂g

Addition: ∂(g1 + g2) = ∂g1 + ∂g2 (RHS is addition of sets)

Affine transformation of variables: if f (u) = g(Au + b), then
∂f (u) = AT∂g(Au + b)

Finite point wise maximum: if g = maxi=1,...,m gi , then

∂g(u) = Co ∪ {∂gi(u)|gi(u) = g(u)}

i.e. convex hull of union of subdifferentials of ‘active’
functions at u
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Example

Consider g(u) = |u|, note that

∂g(0) = Co({−1} ∪ {1}) = [−1,1]
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Optimality Conditions - Unconstrained

Recall for g convex, differentiable,

g(u?) = inf
u

g(u)⇔ 0 = ∇g(u?)

Generalization to non-differentiable convex g

g(u?) = inf
u

g(u)⇔ 0 ∈ ∂g(u?)

Proof. By definition

g(w) ≥ g(u?) + 0T (w − u?) for all w ⇔ 0 ∈ ∂g(u?)
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Example
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Parametrizing the Right-Hand Side

Define c(u) as optimal value of

c(u) = min f0(x)

fi(x) ≤ ui , i = 1, . . . ,m

where x ∈ dom f0 and f0, fi are convex functions

c(u) is convex

Suppose strong duality holds and denote λ? as the
maximizer of the dual function

inf
x∈dom f0

(f0(x)− λT (f (x)− u))

for λ ≤ 0. Then λ? ∈ ∂c(u).
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Graphical Illustration
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Proof: c(u) Is Convex

Consider any u1,u2, denote x1, x2 as the respective
optimal solutions.

Consider any a ∈ [0,1] and denote xa as the optimal
solution when au1 + (1− a)u2 is used as input

Convexity of f ⇒ f (ax1 + (1− a)x2) ≤ au1 + (1− a)u2

(since f (x1) ≤ u1 and f (x2) ≤ u2)

Convexity of dom f0 ⇒ ax1 + (1− a)x2 is admissible when
au1 + (1− a)u2 is used as input

Optimality of xa with respect to au1 + (1− a)u2 ⇒
f0(xa) ≤ f0(ax1 + (1− a)x2)

Convexity of f0 ⇒
c(au1 + (1− a)u2) ≤ ac(u1) + (1− a)c(u2)
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Proof: λ? Is a Subgradient

Denote x̄ as the optimal solution for ū

Denote x? ∈ arg minx∈dom (f0(x)− (λ?)T (f (x)− u))

c(u) = f0(x?)− (λ?)T (f (x?)− u) ≤ strong duality

f0(x̄)− (λ?)T (f (x̄)− u) = definition of x?

f0(x̄)− (λ?)T (f (x̄)− ū)− (λ?)T (ū − u) ≤

f0(x̄)− (λ?)T (ū − u) = since f (x̄) ≤ ū, λ? ≤ 0

c(ū)− (λ?)T (ū − u) definition of x̄
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Example: The Diet Problem

Problem: Choose 3 dishes (x1, x2, x3) so as to satisfy nutrient
requirements b1 and b2, while minimizing cost (dishes cost 1 $,
2 $, and 1 $ respectively)

Table: The unit of nutrients in each dish.

Dish 1 Dish 2 Dish 3
Nutrient 1 0.5 4 1
Nutrient 2 2 1 2

z(b) = min x1 + 2x2 + x3

s.t. 0.5x1 + 4x2 + x3 = b1

2x1 + x2 + 2x3 = b2

x1, x2, x3 ≥ 0
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If b ≥ 0, then (we showed this in the previous lecture)

z(b) =


+∞, b2 > 4b1

0.5b2, 2b1 ≤ b2 ≤ 4b1

0.4286b1 + 0.2857b2, 0.25b1 ≤ b2 ≤ 2b1

+∞, b2 < 0.25b1

This is a convex function
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Sensitivity

Corollary of previous proposition: if c(u) is differentiable at u,
then λ? = ∇c(u)

⇒ λi is equal to the sensitivity of c(u) to a marginal change in
the right-hand-side of the constraint corresponding to λi
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Example: The Diet Problem - Sensitivity

Consider the diet problem with b1 = 1 and b2 = 1

Show that π?1 = 0.4286 and π?2 = 0.2857 are dual optimal (we
used KKT conditions)

Sensitivity interpretation of π?1: if b1 = 1 + ε, optimal cost z
increases by 0.4286ε

Proof: For b1 = 1 + ε,
x? = (0,0.1429 + 0.2857ε,0.4286− 0.1429ε)⇒ cost change
equals 2 · 0.2857ε− 1 · 0.1429ε = 0.4286ε

Note: Expressing equality constraints as −h(x) = 0 gives
(−0.4286,−0.2857), note the change in sign of π?
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Sign of Dual Multipliers

Dual optimal multiplier may be equal to

sensitivity, or

minus the sensitivity

of objective function f0(x) to change in right hand side of
fi(x) ≤ 0

Sensitivity depends on how Lagrangian function is defined:

If L(x , λ) = f0(x)− λi · fi(x) then then λ is equal to
sensitivity

If L(x , λ) = f0(x) + λi · fi(x) then λ equals minus sensitivity

Same idea applies for hi(x) = 0
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