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Sequence of Events

1 First-stage decisions: decisions taken before uncertainty is
revealed

2 Second-stage decisions: decisions taken after uncertainty is
revealed

3 Sequence of events: x → ω → y(ω)

First stage

Second stage

Uncertainty
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Mathematical Formulation

min cT x + E[min q(ω)T y(ω)]

Ax = b

T (ω)x + W (ω)y(ω) = h(ω)

x ≥ 0, y(ω) ≥ 0

First-stage decisions x ∈ Rn1 , second stage decisions y(ω) ∈ Rn2

First-stage parameters: c ∈ Rn1 , b ∈ Rm1 , A ∈ Rm1×n1

Second-stage data: q(ω) ∈ Rn2 , h(ω) ∈ Rm2 , T (ω) ∈ Rm2×n1 ,
W (ω) ∈ Rm2,n2

Fixed recourse if W does not depend on ω
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Example: Newsboy Problem
Denote

x : amount of product produced in period 1
y : amount of product sold in period 2
C: unit cost of production
P: sale price
D(ω): random demand

Two-stage stochastic formulation of newsboy problem:

min
x,s(ω)≥0

C · x − E[P · s(ω)]

s.t. s(ω) ≤ x

s(ω) ≤ D(ω)

Extensions: salvage value, penalty for unserved demand

What is the trade-off of large/small value of x?
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Example: Capacity Expansion Planning

min
x,y≥0

n∑
i=1

(Ii · xi + E[
m∑

j=1

Ci · Tj · yij (ω)])

s.t.
n∑

i=1

yij (ω) = Dj (ω), j = 1, . . . ,m

m∑
j=1

yij (ω) ≤ xi , i = 1, . . .n − 1

Ii ,Ci : fixed/variable cost of technology i

Dj (ω),Tj : height/width of load block j

yij (ω): capacity of i allocated to j

xi : capacity of i

Note: Tj independent of ω
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Example: Capacity Expansion Planning - Graphical
Illustration

Note: Tj independent of ω
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Example: Hydro-Thermal Scheduling

Denote:

qt : hydro power

pt : thermal power

C: marginal cost of thermal power plant

Dt : demand

E : storage limit in the dam

xt : content of dam at the end of a stage

rt : amount of rain during stage t
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Hydro-thermal scheduling problem:

min C · p1 + E[C · p2(ω)]

p1 + q1 ≥ D1

x1 ≤ x0 + r1 − q1

x1 ≤ E

p2(ω) + q2(ω) ≥ D2

q2(ω) ≤ x1 + r2(ω)

p1,q1, x1,p2(ω),q2(ω) ≥ 0

What is the trade-off?
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Scenario Trees

A scenario tree is a graphical representation of a Markov process
{ξt}t∈Z, where

nodes correspond to histories of realizations ξ[t] = (ξ1, . . . , ξt )

edges correspond to transitions from ξ[t] to ξ[t+1]
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Scenario Tree Terminology

Root corresponds to t = 1

Ancestor of a node ξ[t], A(ξ[t]): unique adjacent node which
precedes ξt :

A(ξ[t]) = {ξ[t−1] : (ξ[t−1], ξ[t]) ∈ E}

Children or descendants of a node, C(ξ[t]): set of nodes that
are adjacent to ξ[t] and occur at stage t + 1:

C(ξ[t]) = {ξ[t+1] : (ξ[t], ξ[t+1]) ∈ E}

13 / 47



Scenario Tree Graphical Illustration

Specification of probability space requires:

Assigning value ξ[t] for every node

Assigning value P[ξ[t+1]|ξ[t]] for every edge
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Lattice

A lattice is a graphical representation of a Markov process {ξt}t∈Z,
where

nodes correspond to realizations ξt

edges correspond to transitions from ξt to ξt+1

15 / 47



Lattice Graphical Illustration

Specification of probability space requires:

Assigning value ξt for every node
Assigning value P[ξt+1|ξt ] for every edge

16 / 47



Equivalence of Scenario Trees and Lattices
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Serial Independence

A process satisfies serial independence if, for every stage t , ξt has a
probability distribution that does not depend on the history of the
process, i.e. one can define a probability measure pt (i) at each stage
t , such that

P[ξt (ω) = i |ξ[t−1](ω)] = pt (i),∀ξ[t−1] ∈ Ξ[t−1], i ∈ Ξt
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Checking for Serial Independence

Values on arcs indicate transition probabilities, values in nodes
indicate realization of ξt
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Populating Scenario Trees and Lattices with Data

For scenario trees, one specifies:
The value of ξt at each node
The transition probability for every edge

For lattices, one specifies:
The value of ξt at each node (a node generally does not
correspond to a unique history ξ[t])
The transition probability for every edge

For lattices with stage-wise independence, one specifies:
The value of ξt at each node
The probability of realization of each node of the lattice
(well-defined)
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General Formulation

Extended form of a multistage stochastic linear program:

(MSLP) :

min cT
1 x1 + E[c2(ω)T x2(ω) + · · ·+ cH(ω)T xH(ω)]

s.t. W1x1 = h1

T1(ω)x1 + W2(ω)x2(ω) = h2(ω), ω ∈ Ω

...

Tt−1(ω)xt−1(ω) + Wt (ω)xt (ω) = ht (ω), ω ∈ Ω

...

TH−1(ω)xH−1(ω) + WH(ω)xH(ω) = hH(ω), ω ∈ Ω

x1 ≥ 0, xt (ω) ≥ 0, t = 2, . . . ,H

22 / 47



Notation

Probability space (Ω,2Ω,P) with filtration {A}t∈{1,...,H}

ct (ω) ∈ Rnt : cost coefficients

ht (ω) ∈ Rmt : right-hand side parameters

Wt (ω) ∈ Rmt×nt : coefficients of xt (ω)

Tt−1(ω) ∈ Rmt×nt−1 : coefficients of xt−1(ω)

xt (ω): set of state and action variables in period t

We implicitly enforce non-anticipativity by requiring that xt and
ξt are adapted to filtration {A}t∈{1,...,H}
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Stochastic Programs on Scenario Trees and Lattices

We now consider two specific instantiations of (MSLP):

(MSLP-ST): stochastic programs on scenario trees

(MSLP-L): stochastic programs on lattices

In these formulations, we will use the following notation:

ωt ∈ St (interpretation: index in the support Ξt of random input ξt )

ω[t] ∈ S1 × . . .× St (interpretation: index in Ξ[t] = Ξ1 × . . .× Ξt ,
which is the history of realizations, up to period t)
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Formulation on a Scenario Tree

(MSLP − ST ) :

min cT
1 x1 + E[c2(ω[2])

T x2(ω[2]) + · · ·+ cH(ω[H])
T xH(ω[H])]

s.t. W1x1 = h1

T1(ω[2])x1 + W2(ω[2])x2(ω[2]) = h2(ω[2]), ω[2] ∈ S1 × S2

...

Tt−1(ω[t])xt−1(ω[t−1]) + Wt (ω[t])xt (ω[t]) = ht (ω[t]), ω[t] ∈ S1 × . . .× St

...

TH−1(ω[H])xH−1(ω[H−1]) + WH(ω[H])xH(ω[H]) = hH(ω[H]),

ω[H] ∈ S1 × . . .× SH

x1 ≥ 0, xt (ω[t]) ≥ 0, t = 2, . . . ,H
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Formulation on Lattice

(MSLP − L) :

min cT
1 x1 + E[c2(ωt )

T x2(ω[2]) + · · ·+ cH(ωH)T xH(ω[H])]

s.t. W1x1 = h1

T1(ω2)x1 + W2(ω2)x2(ω[2]) = h2(ω2), ω[2] ∈ S1 × S2

...

TH−1(ωH)xH−1(ω[H]) + WH(ωH)xH(ω[H]) = hH(ωH),

ω[H] ∈ S1 × . . .× SH

x1 ≥ 0, xt (ω[t]) ≥ 0, t = 2, . . . ,H
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Comments

Compared to (MSLP-ST), ξt in (MSLP-L) is indexed over ωt ∈ St

Problem size of (MSLP-L) doesn’t really change compared to
(MSLP-ST) (xt is still indexed over ω[t] ∈ S1 × . . .× St )
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Example: Capacity Expansion - Scenario Tree

Ref

10x

Ref

10x

P(10x) = 0.9 P(10x) = 0.9

P(Ref) = 0.1 P(Ref) = 0.1

Table: Load duration curve for reference and 10x outcome

Duration (hours) Level (MW) Level (MW)
Reference scenario 10x wind scenario

Base load 8760 0-7086 0-3919
Medium load 7000 7086-9004 3919-7329

Peak load 1500 9004-11169 7329-10315
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Example: Capacity Expansion - Technological Options

Technology Fuel cost ($/MWh) Inv cost ($/MWh)
Coal 25 16
Gas 80 5

Nuclear 6.5 32
Oil 160 2
DR 1000 0

29 / 47



Example: Capacity Expansion - Notation and Setup

Denote:

vitω[t] : capacity of technology i constructed in period t

xitω[t] : total amount of capacity of technology i available in period t

yijtω[t] : power allocation from technology i to load block j

Sequence of events:
1 Capacity xi,t−1,ω[t−1]

available at the end of stage t − 1 that can
serve demand in t

2 Demand Djtω[t] is observed
3 Construct new capacity vitω[t]
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Example: Capacity Expansion - Model
Objective function:

min
x,v ,y≥0

n∑
i=1

Ii · vi11

+
2∑

ω[2]=1

pω[2]
(

n∑
i=1

Ii · vi2ω[2]
+

n∑
i=1

m∑
j=1

Ci · Tj · yij2ω[2]
)

+
4∑

ω[3]=1

pω[3]
(

n∑
i=1

Ii · vi3ω[3]
+

n∑
i=1

m∑
j=1

Ci · Tj · yij3ω[3]
)

Note: first stage involves only investment decision

Supply equals demand (enforced only for t > 1):
n∑

i=1

yijtω[t] = Djtω[t] , j ∈ {1, . . . ,m}, t ∈ {2, . . . ,3}

ω[2] ∈ {1,2}, ω[3] ∈ {1, . . . ,4}
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Example: Capacity Expansion - Model
Investment dynamics:

xi2ω[2]
= xi11 + vi2ω[2]

, i ∈ {1, . . . ,n − 1}, ω[2] ∈ {1,2}

xi3ω[3]
= xi21 + vi3ω[3]

, i ∈ {1, . . . ,n − 1}, ω[3] ∈ {1,2}

xi3ω[3]
= xi22 + vi3ω[3]

, i ∈ {1, . . . ,n − 1}, ω[3] ∈ {3,4}

Technology capacity constraints:
m∑

j=1

yij2ω[2]
≤ xi11, i ∈ {1, . . .n − 1}, ω[2] ∈ {1,2}

m∑
j=1

yij3ω[3]
≤ xi21, i ∈ {1, . . .n − 1}, ω[3] ∈ {1,2}

m∑
j=1

yij3ω[3]
≤ xi22, i ∈ {1, . . .n − 1}, ω[3] ∈ {3,4}

Does this model obey block separability?
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Example: Capacity Expansion - Optimal Solution

Optimal expansion plan:

Coal, period 1: 2986 MW

Nuclear, period 1: 7329 MW

Oil, period 1: 854 MW

Period 2: nothing (!)

Why is it optimal to invest only in period 1?
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Stochastic Control Block Diagram

Feasible 

action set System 

dynamics

Cost
Random 

input 

distribution
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Stochastic Programming Block Diagram

Feasible 

action set

Cost

Random 

input 

distribution
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Comparison

Timing of action
Stochastic control: first decide ut , then observe realization of
uncertainty ξt

Stochastic programming: first observe the realization of
uncertainty, ξt , then decide xt

System state
Stochastic control: xt encodes all information about system state
Stochastic programming: vector xt and node of the lattice ωt

encode all information about system state

Feasible action set At

Stochastic control: At depends only on xt

Stochastic programming: At depends on xt−1 and ξt
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Block Separability

Feasible action set in stage t :

Tt−1(ωt )xt−1(ω[t]) + Wt (ωt )xt (ω[t]) = ht (ωt ), ω[t] ∈ S1 × . . .× St

Block separability occurs when these constraints can be written in
the following form:

T xx
t−1(ωt )xt−1(ω[t−1]) + W xx

t (ωt )xt (ω[t]) = hxx
t (ωt ), ω[t] ∈ S1 × . . .× St

T xu
t−1(ωt )xt−1(ω[t−1]) + W xu

t (ωt )ut (ωt ) = hxu
t (ωt ), ω[t] ∈ S1 × . . .× St

Benefit: decision variables ut do not need to be propagated forward
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Application of Dynamic Programming in MSLP

Q-function in final period:

QH(xH−1, ξH) = min
xH

cH(ωH)T xH

s.t. TH−1(ωH)xH−1 + WH(ωH)xH = hH(ωH)

xH ≥ 0

Value function in final period:

VH(xH−1, ωH−1) = EξH [QH(xH−1, ξH)|ωH−1]
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Application of Dynamic Programming in MSLP

Proceeding recursively, Q-function in stage t :

Qt (xt−1, ξt ) = min
xt

ct (ωt )
T xt + Vt+1(xt , ωt )

s.t. Tt−1(ωt )xt−1 + Wt (ωt )xt = ht (ωt )

xt ≥ 0

Value function in stage t :

Vt (xt−1, ωt−1) = Eξt [Qt (xt−1, ξt )|ωt−1]
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Application of Dynamic Programming to MSLP

Proceed backwards until:

min cT
1 x1 + V2(x1)

s.t. W1x1 = h1

x1 ≥ 0
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Notational Convention

Note the different notation for node of the lattice (ωt ) and
realization of uncertainty (ξt )

The notation Vt (xt−1, ωt−1) emphasizes how value functions are
stored by SDDP

The notation Qt (xt−1, ξt ) is the conventional notation used in
stochastic programming, but Q-functions are not explicitly stored
in SDDP

Note the difference in the definition of the Q function
Stochastic control: function of state x , action u
Stochastic programming: function of state x , random input ξt

42 / 47



Example: Hydrothermal Scheduling
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Example: Hydrothermal Scheduling

Consider the following hydro-thermal system:

3 periods

Demand in each period: 1000 MW

Marginal cost of thermal generators: 25 $/MWh

Max production of thermal generators: 500 MW

Marginal cost of lost load: 1000 $/MWh

Rainfall: independent identically distributed, uniformly on
[0,1000] MW, denote density function as f : R→ R
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Example: Hydrothermal Scheduling

Denote

p: thermal production

q: hydro production

l : unserved demand

x2: stored hydro energy at beginning of period 2

Q3(x2,R3) = min 1000 · l + 25 · p

s.t. l + p + q ≥ 1000

p ≤ 500

q ≤ x2 + R3

l ,p,q ≥ 0
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Q function of period 3:

Q3(x2,R3) =


0, x2 + R3(ω) ≥ 1000
25 · (1000 − (x2 + R3(ω))), 500 ≤ x2 + R3(ω) < 1000
500 · 25 + 1000 · (500 − (x2 + R3(ω))), 0 ≤ x2 + R3(ω) < 500

Value function of period 3:

V3(x2) = ER3 [Q3(x2,R3)]

= P[R3(ω) ≥ 1000 − x2] · 0

+

∫ 1000−x2

r=500−x2

(25 · (1000 − r − x2))f (r)dr

+

∫ 500−x2

r=0
(500 · 25 + 1000 · (500 − r − x2))f (r)dr

=


0, x2 ≥ 1000

12500 − 25 · x2 + 0.0125 · x2
2 , 500 ≤ x2 < 1000

134375 − 512.5 · x2 + 0.5 · x2
2 , 0 ≤ x2 < 500

Note:

V3 is convex

V3 is not a piecewise linear function of x2
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Q2 can be computed as:

Q2(x1,R2) = min 1000 · l + p + V3(x2)

s.t. l + p + q ≥ 1000,p ≤ 500

x2 = x1 − q + R2(ω)

l ,p,q, x2 ≥ 0

Q2 yields V2, V2 yields Q1, . . .
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