Reviews of Probability Theory and Convex Analysis Operations Research

Anthony Papavasiliou

Given a sample space Ω , a sigma algebra sigma-algebra \mathcal{A} is a set of subsets of Ω such that

- $\Omega \in \mathcal{A}$
- if $A \in A$ then also $\Omega A \in A$
- if $A_i \in \mathcal{A}$ for i = 1, 2, ... then also $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

Sigma Algebras for Markov Decision Processes

- Given a sample space Ω, there is no unique sigma-algebra of Ω, here are two
 - $\{\emptyset, \Omega\}$
 - 2^Ω set of all subsets (power set) of Ω
- In these notes we will focus on finite Ω, and its power set, denoted B(Ω)
- Elements of a sigma-algebra are called **events**

Example: Stock Price Evolution

- State space is the set of values that the stock price can take at each stage: S₀ = {C}, S₁ = {C_u, C_d}, S₂ = {C_{uu}, C_{ud}, C_{dd}}
- Sample space is

$$\Omega = S_0 \times S_1 \times S_2 = \{ (C, C_u, C_{uu}), (C, C_u, C_{ud}), (C, C_u, C_{dd}), (C, C_u, C_{dd}), (C, C_d, C_{uu}), (C, C_d, C_{ud}), (C, C_d, C_{dd}) \}$$

Information in period 2:

$$\Omega = \{ (C, C_u, C_{uu}), (C, C_u, C_{ud}), (C, C_d, C_{ud}), (C, C_d, C_{dd}) \}$$

$$\mathcal{B}(\Omega) = \{ \emptyset, \{ (C, C_u, C_{uu}) \}, \dots, \{ (C, C_u, C_{uu}), (C, C_u, C_{ud}) \}, \dots, \{ (C, C_u, C_{uu}), (C, C_u, C_{ud}), (C, C_d, C_{ud}) \}, \dots, \{ (C, C_u, C_{uu}), (C, C_u, C_{ud}), (C, C_u, C_{dd}), (C, C_d, C_u u) \}, \dots, \{ (C, C_u, C_{uu}), (C, C_u, C_{ud}), (C, C_u, C_{dd}), (C, C_d, C_u u) \}, \dots, \dots \}$$

 $\{(C, C_u, C_{uu}), (C, C_u, C_{ud}), (C, C_u, C_{dd}), \\ (C, C_d, C_{uu}), (C, C_d, C_{ud}), (C, C_d, C_{dd})\}\}$

'the stock price in period 2 is C_{ud} ': identifiable (corresponds to $\{(C, C_u, C_{ud}), (C, C_d, C_{ud})\}$, which is an element of $\mathcal{B}(\Omega)$)

Information in period 0:

 $\mathcal{A}_0=\{\emptyset,\Omega\}.$

This is a valid sigma-algebra on Ω (satisfies all three conditions of the definition of a sigma-algebra)

Information in period 1:

$$\begin{aligned} \mathcal{A}_{1} &= \{ \emptyset, \\ \{ (C, C_{u}, C_{uu}), (C, C_{u}, C_{ud}), (C, C_{u}, C_{dd}) \}, \\ \{ (C, C_{d}, C_{uu}), (C, C_{d}, C_{ud}), (C, C_{d}, C_{dd}) \}, \\ \Omega \end{aligned}$$

- 'the stock price in period 0 is C, and in period 1 it is C_u': distinguishable (2nd element in A₁)
- 'the stock price in period 0 was C, in period 1 it is C_u, and in period 2 it is C_{uu}': not distinguishable (not in A₂)

A measurable probability space is the triplet $(\Omega, \mathcal{A}, \mathbb{P})$, where Ω is the sample space, \mathcal{A} is a sigma-algebra of Ω , and $\mathbb{P} : \mathcal{A} \to [0, 1]$ is the probability measure that obeys the following properties:

- $\mathbb{P}(\emptyset) = 0$,
- $\mathbb{P}(\Omega) = 1$, and
- $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_i P(A_i)$ if A_i are disjoint

Note: $\mathbb{P}[\cdot]$ and $\mathbb{P}(\cdot)$ will be used interchangeably

A **random variable** $\xi : \Omega \to \mathbb{R}$ is a function that maps random outcomes to real values

A **random vector** is a function $\xi : \Omega \to \mathbb{R}^n$ that maps outcomes to real-valued vectors

Given an index set T, and a probability space $(\Omega, \mathcal{B}(A), \mathbb{P})$, a **stochastic process** is a collection of \mathbb{R}^n -valued random vectors, which can be written as $(X(t) : t \in T)$

Given $(\Omega, \mathcal{B}(\Omega))$, a **filtration** is an increasing sequence of sigma-algebras $\{\mathcal{A}_t\}_{t\geq 0}$ where each *t* is non-negative and

$$t_1 \leq t_2 \Rightarrow \mathcal{A}_{t_1} \subseteq \mathcal{A}_{t_2}$$

In the stock price example, the sequence (A_0, A_1, A_2) , where $A_2 = B(\Omega)$, defines a filtration on $(\Omega, B(\Omega))$

The **conditional probability** of event *A* given event *B* is defined as

$$\mathbb{P}[\boldsymbol{A}|\boldsymbol{B}] = \begin{cases} \frac{\mathbb{P}[\boldsymbol{A} \cap \boldsymbol{B}]}{\mathbb{P}[\boldsymbol{B}]}, & \mathbb{P}[\boldsymbol{B}] > 0\\ 0, & \mathbb{P}[\boldsymbol{B}] = 0 \end{cases}$$

<ロ> <回> <回> <回> <回> <回> <回> <回> <回</p>

14/25

Stock Pricing Example

Random variables in stock pricing example: price ξ_t in stage t

For period 0,

$$\xi_0(\omega) = \mathcal{C}, \omega \in \Omega$$

For period 1,

$$\xi_1(\omega) = C_u, \omega = (C, C_u, \cdot)$$

$$\xi_1(\omega) = C_d, \omega = (C, C_d, \cdot)$$

For period 2,

$$\begin{aligned} \xi_2(\omega) &= C_{uu}, \omega = (C, \cdot, C_{uu}) \\ \xi_2(\omega) &= C_{ud}, \omega = (C, \cdot, C_{ud}) \\ \xi_2(\omega) &= C_{ud}, \omega = (C, \cdot, C_{ud}) \end{aligned}$$

The **cumulative distribution function** of a random variable ξ is defined as $F_{\xi}(x) = P(\xi \le x)$

For discrete random variables, the **probability mass function** *f* is defined as $f(\xi^k) = P(\xi = \xi^k), k \in K$ with $\sum_{k \in K} f(\xi^k) = 1$

For continuous random variables, the **density function** *f* is defined by $P(a \le \xi \le b) = \int_a^b f(\xi) d\xi = \int_a^b dF(\xi)$ with $\int_{-\infty}^{\infty} dF(\xi) = 1$

The **expectation** of a random variable is defined as $\mu = \sum_{k \in K} \xi^k f(\xi^k)$ for discrete random variables and as $\int_{-\infty}^{\infty} \xi dF(\xi)$ continuous random variables The moment **rth moment** of ξ is $\overline{\xi}^{(r)} = \mathbb{E}[\xi^r]$

The **variance** of a random variable is defined as $\mathbb{E}[(\xi - \mu)^2]$

The α -quantile of ξ is a point η such that for $0 < \alpha < 1$, $\eta = \min\{x | F(x) \ge \alpha\}$ A sequence $X_1, X_2, ...$ of random variables is said to **converge** in distribution, or **converge weakly**, or **converge in law** to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x)$$

for every $x \in \mathbb{R}$ at which *F* is continuous. *F* and *F_n* are the cumulative distribution functions of *X* and *X_n* respectively

A **polyhedron** is a set in \mathbb{R}^n which can be expressed as $\{x : Ax \leq b\}$, where $A \in \mathbb{R}^m \times \mathbb{R}^n$ and $b \in \mathbb{R}^m$.

Convex

Consider a set of points $x_i \in \mathbb{R}^n$, i = 1, ..., n, a **convex combination** of these points is a point $\sum_{i=1}^n \lambda_i x_i$, such that $\sum_{i=1}^n \lambda_i = 1$ and $\lambda_i \ge 0, i = 1, ..., n$

X is a **convex set** if it contains any convex combination of points $x_i \in X$

The **convex hull** of a set of points is the set of all convex combinations of these points

An **extreme point** of a convex set is a point which cannot be expressed as the convex combination of two distinct points in the set

A point $r \in \mathbb{R}^n$ is a **ray** of a polyhedron P if and only if for any point $x \in P$, $\{y \in \mathbb{R}^n : y = x + \lambda r, \lambda \ge 0\} \subseteq P$

A ray *r* of *P* is an **extreme ray** if it cannot be expressed as a convex combination of other rays of *P*

Convex and Concave Functions

f is a **convex function** if for all $0 \le \lambda \le 1$ and any x_1, x_2 we have $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$

f is **concave** if -f is convex.

Frequently Encountered Classes of Functions

f is an **additively separable function** if it can be written as $f(x_1, x_2, ..., x_n) = f_1(x_1) + f_2(x_2) + ... + f_n(x_n)$

The **domain** of *f*, dom *f*, is the set where *f* is finite

A continuous function *f* is **piecewise linear** if it can be written as

$$f(x) = \max_{i=1,\dots,n} (a_i^T x + b_i)$$

for all $x \in \text{dom } f$, where $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$, and n a finite integer number

Convex Optimization Problems

An **optimization problem** is the problem of finding the minimum of a function *f* over a set $X \subset \mathbb{R}^n$:

min f(x)subject to $x \in X$

X is the **feasible set** of the problem, f is the **objective function** of the problem

Any $x \in X$ is a **feasible solution**, any $x^* \in X$ such that $f(x^*) \leq f(x)$ for any $x \in X$ is an **optimal solution**

A **convex optimization problem** is an optimization problem with a convex objective function and a convex set of feasible solutions