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Sigma Algebra

Given a sample space Ω, a sigma algebra sigma-algebra A is
a set of subsets of Ω such that

Ω ∈ A

if A ∈ A then also Ω− A ∈ A

if Ai ∈ A for i = 1,2, . . . then also ∪∞i=1Ai ∈ A
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Sigma Algebras for Markov Decision Processes

Given a sample space Ω, there is no unique sigma-algebra
of Ω, here are two

{∅,Ω}
2Ω set of all subsets (power set) of Ω

In these notes we will focus on finite Ω, and its power set,
denoted B(Ω)

Elements of a sigma-algebra are called events
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Example: Stock Price Evolution

State space is the set of values that the stock price can
take at each stage: S0 = {C}, S1 = {Cu,Cd},
S2 = {Cuu,Cud ,Cdd}

Sample space is

Ω = S0 × S1 × S2 = {(C,Cu,Cuu), (C,Cu,Cud ), (C,Cu,Cdd ), (C,Cd ,Cuu),

(C,Cd ,Cuu), (C,Cd ,Cud ), (C,Cd ,Cdd )}
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Information of Stock Price Evolution in Period 2

Information in period 2:

Ω = {(C,Cu,Cuu), (C,Cu,Cud ), (C,Cd ,Cud ), (C,Cd ,Cdd )}

B(Ω) = {∅, {(C,Cu,Cuu)}, . . . , {(C,Cu,Cuu), (C,Cu,Cud )}, . . . ,

{(C,Cu,Cuu), (C,Cu,Cud ), (C,Cd ,Cud )}, . . . ,

{(C,Cu,Cuu), (C,Cu,Cud ), (C,Cu,Cdd ), (C,Cd ,Cuu)}, . . . ,

. . .

{(C,Cu,Cuu), (C,Cu,Cud ), (C,Cu,Cdd ),

(C,Cd ,Cuu), (C,Cd ,Cud ), (C,Cd ,Cdd )}}
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Information of Stock Price Evolution in Period 2

‘the stock price in period 2 is Cud ’: identifiable (corresponds to
{(C,Cu,Cud ), (C,Cd ,Cud )}, which is an element of B(Ω))
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Information of Stock Price Evolution in Period 0

Information in period 0:

A0 = {∅,Ω}.

This is a valid sigma-algebra on Ω (satisfies all three conditions
of the definition of a sigma-algebra)
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Information of Stock Price Evolution in Period 1

Information in period 1:

A1 = {∅,

{(C,Cu,Cuu), (C,Cu,Cud ), (C,Cu,Cdd )},

{(C,Cd ,Cuu), (C,Cd ,Cud ), (C,Cd ,Cdd )},

Ω}

‘the stock price in period 0 is C, and in period 1 it is Cu ’:
distinguishable (2nd element in A1)

‘the stock price in period 0 was C, in period 1 it is Cu, and
in period 2 it is Cuu ’: not distinguishable (not in A2)
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Probability Space

A measurable probability space is the triplet (Ω,A,P), where
Ω is the sample space, A is a sigma-algebra of Ω, and
P : A → [0,1] is the probability measure that obeys the
following properties:

P(∅) = 0,

P(Ω) = 1, and

P(∪∞i=1Ai) =
∑

i P(Ai) if Ai are disjoint

Note: P[·] and P(·) will be used interchangeably

11 / 25



Random Variable, Random Vector, Stochastic Process

A random variable ξ : Ω→ R is a function that maps random
outcomes to real values

A random vector is a function ξ : Ω→ Rn that maps outcomes
to real-valued vectors

Given an index set T , and a probability space (Ω,B(A),P), a
stochastic process is a collection of Rn-valued random
vectors, which can be written as (X (t) : t ∈ T )
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Filtration

Given (Ω,B(Ω)), a filtration is an increasing sequence of
sigma-algebras {At}t≥0 where each t is non-negative and

t1 ≤ t2 ⇒ At1 ⊆ At2

In the stock price example, the sequence (A0,A1,A2), where
A2 = B(Ω), defines a filtration on (Ω,B(Ω))
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Conditional Probability

The conditional probability of event A given event B is
defined as

P[A|B] =

{ P[A∩B]
P[B] , P[B] > 0

0, P[B] = 0
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Stock Pricing Example

Random variables in stock pricing example: price ξt in stage t

For period 0,
ξ0(ω) = C, ω ∈ Ω

For period 1,

ξ1(ω) = Cu, ω = (C,Cu, ·)

ξ1(ω) = Cd , ω = (C,Cd , ·)

For period 2,

ξ2(ω) = Cuu, ω = (C, ·,Cuu)

ξ2(ω) = Cud , ω = (C, ·,Cud )

ξ2(ω) = Cud , ω = (C, ·,Cud )
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Distribution Functions

The cumulative distribution function of a random variable ξ
is defined as Fξ(x) = P(ξ ≤ x)

For discrete random variables, the probability mass function
f is defined as f (ξk ) = P(ξ = ξk ), k ∈ K with

∑
k∈K f (ξk ) = 1

For continuous random variables, the density function f is
defined by P(a ≤ ξ ≤ b) =

∫ b
a f (ξ)dξ =

∫ b
a dF (ξ) with∫∞

−∞ dF (ξ) = 1
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Common Statistics of Random Variables

The expectation of a random variable is defined as
µ =

∑
k∈K ξ

k f (ξk ) for discrete random variables and as∫∞
−∞ ξdF (ξ) continuous random variables

The moment rth moment of ξ is ξ̄(r) = E[ξr ]

The variance of a random variable is defined as E[(ξ − µ)2]

The α-quantile of ξ is a point η such that for 0 < α < 1,
η = min{x |F (x) ≥ α}
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Convergence in Distribution

A sequence X1,X2, . . . of random variables is said to converge
in distribution, or converge weakly, or converge in law to a
random variable X if

lim
n→∞

Fn(x) = F (x)

for every x ∈ R at which F is continuous. F and Fn are the
cumulative distribution functions of X and Xn respectively
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Polyhedron

A polyhedron is a set in Rn which can be expressed as
{x : Ax ≤ b}, where A ∈ Rm × Rn and b ∈ Rm.
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Convex

Consider a set of points xi ∈ Rn, i = 1, . . . ,n, a convex
combination of these points is a point

∑n
i=1 λixi , such that∑n

i=1 λi = 1 and λi ≥ 0, i = 1, . . . ,n

X is a convex set if it contains any convex combination of
points xi ∈ X

The convex hull of a set of points is the set of all convex
combinations of these points
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Extreme Points, Extreme Rays

An extreme point of a convex set is a point which cannot be
expressed as the convex combination of two distinct points in
the set

A point r ∈ Rn is a ray of a polyhedron P if and only if for any
point x ∈ P, {y ∈ Rn : y = x + λr , λ ≥ 0} ⊆ P

A ray r of P is an extreme ray if it cannot be expressed as a
convex combination of other rays of P
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Convex and Concave Functions

f is a convex function if for all 0 ≤ λ ≤ 1 and any x1, x2 we
have f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)

f is concave if −f is convex.
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Frequently Encountered Classes of Functions

f is an additively separable function if it can be written as
f (x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)

The domain of f , dom f , is the set where f is finite

A continuous function f is piecewise linear if it can be written
as

f (x) = max
i=1,...,n

(aT
i x + bi)

for all x ∈ dom f , where ai ∈ Rn, bi ∈ R, and n a finite integer
number
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Convex Optimization Problems

An optimization problem is the problem of finding the
minimum of a function f over a set X ⊂ Rn:

min f (x)

subject to x ∈ X

X is the feasible set of the problem, f is the objective
function of the problem

Any x ∈ X is a feasible solution, any x? ∈ X such that
f (x?) ≤ f (x) for any x ∈ X is an optimal solution

A convex optimization problem is an optimization problem
with a convex objective function and a convex set of feasible
solutions
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