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The Nested L-Shaped Decomposition Subproblem

For each stage t = 1, . . . ,H − 1, scenario k = 1, . . . , |Ξ[t]|

NLDS(t , k) : min(ct ,k )T x + θ

(π) : Wt ,kx = ht ,k − Tt−1,kxt−1,A(t ,k)

(ρj) : Et ,k ,jx + θ ≥ et ,k ,j , j = 1, . . . , rt ,k (1)

(σj) : Dt ,k ,jx ≥ dt ,k ,j , j = 1, . . . , st ,k (2)

x ≥ 0

Ξ[t]: support of ξ[t]

A(t , k): ancestor of node k at stage t

xt−1,A(t ,k): current solution from A(t , k)

Constraints (2): feasibility cuts

Constraints (1): optimality cuts
4 / 62



Nested L-Shaped Method

Building block: NLDS(t , k): problem at stage t , scenario k

NLDS(t , k)

xtkπtk , ρtk , σtk

Cut Trial solution
t − 1,A(t , k) t + 1, D(t , k)

A(t , k): ancestor of outcome k in period t

D(t , k): descendants of outcome k in period t
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Example

Node: (t = 1, k = 1)

Direction: forward

Output: x1,1
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Example

Nodes: (t = 2, k), k ∈ {1,2}

Direction: forward

Output: x2,k , k ∈ {1,2}
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Example

Nodes: (t = 3, k), k ∈ {1,2,3,4}

Direction: backward

Output: (π3,k , ρ3,k , σ3,k ), k ∈ {1,2,3,4}
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Example

Nodes: (t = 2, k), k ∈ {1,2}

Direction: backward

Output: (π2,k , ρ2,k , σ2,k ), k ∈ {1,2}
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Feasibility Cuts

If NLDS(t , k) is infeasible, solver returns (π, σ1, . . . , σst,k ) with
σj ≥ 0, j = 1, . . . , st ,k , such that:

πT (ht ,k − Tt−1,kxt−1,A(t ,k)) +
∑st,k

j=1 σ
T
j dt ,k ,j > 0

πT Wt ,k +
∑st,k

j=1 σ
T
j Dt ,k ,j ≤ 0

The following is a valid feasibility cut for NLDS(t − 1,a(k)):

(FC) : Dt−1,A(t ,k)x ≤ dt−1,A(t ,k)

where

Dt−1,A(t ,k) = πT Tt−1,k

dt−1,A(t ,k) = πT htk +

st,k∑
j=1

σT
j dt ,k ,j
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Optimality Cuts

For all k ∈ Dt−1,j , solve NLDS(t , k), then compute

Et−1,j =
∑

k∈D(t−1,j)

pt (k |j) · (πt ,k )T Tt−1,k

et−1,j =
∑

k∈D(t−1,j)

pt (k |j) · ((πt ,k )T ht ,k +

rt,k∑
i=1

ρT
t ,k ,iet ,k ,i +

st,k∑
i=1

σT
t ,k ,idt ,k ,i)

The following is an optimality cut for NLDS(t − 1, j):

Et−1,jx + θ ≥ et−1,j
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Nested Decomposition Is Non-Scalable

Assume

H time steps, |St | discrete outcomes in each stage

No infeasibility cuts

|S1| = 1 |S2| = 2 |S3| = 4

Forward pass: |S1|+ |S1| · |S2|+ . . . =
∑H−1

t=1 Πt
j=1|Sj |

Backward pass:
∑H

t=2 Πt
j=1|Sj |
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Was Nested Decomposition any Good?

Alternative to nested decomposition is extended form

Extended form will not even load in memory

Nested decomposition will load in memory, but will not
terminate (for large problems)

But: nested Decomposition lays the foundations for SDDP
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Making Nested Decomposition Scalable

Solution for forward pass

In the forward pass, we simulate instead of enumerating

This results in a probabilistic upper bound / termination
criterion

Solutions for backward pass

In the backward pass, we share cuts among nodes of the
same time period

This can only be done on a lattice
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Enumerating Versus Simulating
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Enumeration: {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2,
3), (2, 4))}

Simulation (with 3 samples): {(1, 3), (2, 1), (1, 4)}
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Scenario Tree without Cut Sharing

Dashed box represents storage of a different value function
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Cut Sharing in a Lattice

Dashed box represents storage of a different value function
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Serial Independence

A process satisfies serial independence if, for every stage t , ξt

has a probability distribution that does not depend on the
history of the process, i.e. one can define a probability measure
pt (i) at each stage t , such that

P[ξt (ω) = i |ξ[t−1](ω)] = pt (i), ∀ξ[t−1] ∈ Ξ[t−1], i ∈ Ξt
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Checking for Serial Independence

Values on arcs indicate transition probabilities, values in nodes
indicate realization of ξt
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Cut Sharing with Serial Independence

Dashed box represents storage of a different value function

Intuition: problem is identical from t onwards, independently of
node k in stage t
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Combining Sampling and Optimization in SDDP

Sampling: Generate K samples of random process
(ξ1,i , . . . , ξH,i), i = 1, . . . ,K

Optimization: Solve NLDS in order to generate trial decisions
x̂t ,i :

min cT
t ,kx + θ

(π) : Tt−1,k x̂t−1,i + Wt ,kx = ht ,k

(ρ) : Et ,kx + θ · 1 ≥ et ,k

x ≥ 0
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Implications for Forward Pass

Denote x̂t ,i as trial decision

At each forward pass, we solve H − 1 NLDS problems

For K samples of ξ[H], we solve 1 + K · (H − 2) linear
programs
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Implications for Backward Pass

Denote (πt ,k ,i , ρt ,k ,i) as dual multipliers generated by trial i

For a given trial sequence x[H], solve
∑H

t=2 |Ξt | linear
programs

For K trial sequences, solve K
∑H

t=2 |Ξt | linear programs
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SDDP Forward Pass

Solve NLDS(1). Let x1 be the optimal solution. Initialize
x̂1,i = x1 for i = 1, . . . ,K

Repeat for t = 2, . . . ,H, i = 1, . . . ,K
Sample an outcome ξt,i from the set Ξt

Solve NLDS(t , i) with trial decision x̂t−1,i

Store the optimal solution as x̂t,i
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SDDP Backward Pass

Repeat for t = H,H − 1, . . . ,2
Repeat for i = 1, . . . ,K

Repeat for k = 1, . . . , |Ξt |
Solve NLDS(t , k) with trial decision x̂t−1,i

For all j = 1, . . . , |Ξt−1|, compute

Et−1,j,i =

|Ξt |∑
k=1

pt (k |j) · πT
t,k,iTt−1,k ,

et−1,i,j =

|Ξt |∑
k=1

pt (k |j) · (πT
t,k,iht,k + ρT

t,k,iet,k )

Add the optimality cut

Et−1,j,ix + θ ≥ et−1,j,i

to every NLDS(t − 1, j), j = 1, . . . , |Ξt−1|
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Reusing Multipliers

The propagation of cuts does not require serial independence,
can also be done on a lattice
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Number of Forward Samples K

Increasing K implies

faster learning of value function (+)

more LPs solved at each forward-backward pass (-)

faster growth of NLDS (-)

Want to use large K in later forward passes (why?)
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Terminating SDDP

We have argued that terminating nested decomposition with an
exact solution is impractical

Alternative: terminate when upper bound ' upper bound
Lower bound: objective function value of NLDS(1), since
NLDS(1) solves for

underestimate of V2(x)

in superset of dom V2(x)

z = min
x ,θ

cT
1 x + θ

s.t. Ax = b

E1x + θ · 1 ≥ e1

x ≥ 0

Upper bound: probabilistic
31 / 62



Central Limit Theorem

Suppose {X1,X2, ...} is a sequence of independent identically
distributed random variables with E[Xi ] = µ and
Var [Xi ] = σ2 <∞. Then

√
n
((

1
n

n∑
i=1

Xi

)
− µ

)
d−→ N(0, σ2).

where N(µ, σ2) denotes a normal distribution with mean µ and
variance σ2
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Example: Flipping Coins

Flip a coin K times and count fraction of heads
Repeat 10000 times, record histogram
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Probabilistic Upper Bound

Suppose we draw a sample i of ξ[H] and perform a forward pass

This gives us a vector x̂t ,i , t = 1, . . . ,H

We can compute a cost for this vector zk =
∑H

t=1 ct ,i x̂t ,i

If we repeat this K times, we get a distribution of
independent, identically distributed costs zi , i = 1, . . . ,K

By the Central Limit Theorem, z̄ = 1
K
∑K

i=1 zi converges to
a Gaussian with standard deviation estimated by

σ =

√√√√(
1

K 2 )
K∑

k=1

(z̄ − zi)2

Each sequence x̂[H] is feasible, but not necessarily optimal,
so z̄ is an estimate of an upper bound
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Bounds and Pereira Termination Criterion

After solving NLDS(1) in a forward pass, we can compute a
lower bound z̄
After completing a forward pass, we can compute

zi =
H∑

t=1

ct ,i x̂t ,i

z̄ =
1
K

K∑
i=1

zi

σ =

√√√√ 1
K 2

K∑
i=1

(zi − z̄)2

Terminate if z ∈ (z̄ − 2σ, z̄ + 2σ), which is the 95.4% confidence
interval of z̄
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Graphical Illustration of Pereira Termination Criterion

Objective 

function 

value

Probability
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Size of Monte Carlo Sample

How can we ensure 1% optimality gap with 95.4% confidence?

Choose K such that 2σ ' 0.01 · z̄

Mean z̄ and variance s2 depend (asymptotically) on the
statistical properties of the process, not K

z̄ =
1
K

K∑
i=1

zi

s =

√√√√ 1
K

K∑
i=1

(zi − z̄)2 ⇒ σ =
1√
K

s

Set
K ' (

2 · s
0.01 · z̄

)2
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Full SDDP Algorithm

Initialize: z̄ =∞, σ = 0

Forward pass
Store zLB and z̄
If zLB ∈ (z̄ − 2σ, z̄ + 2σ) terminate, else go to backward
pass

Backward pass

Go to forward pass

38 / 62



Table of Contents

1 Recalling Nested L-Shaped Decomposition

2 Drawbacks of Nested Decomposition and How to Overcome
Them

3 Stochastic Dual Dynamic Programming (SDDP)

4 Termination

5 Example: Hydrothermal Scheduling

39 / 62



Lattice

We will use a lattice with

24 stages (1 month per stage)

20 nodes, random disturbance wt ,k takes a value in
{1,2, . . . ,20}

uniformly distributed (wt ,k equally likely to take any value in
{1,2, . . . ,20})

in order to develop three different rainfall models:

Uniformly distributed rainfall

Additive autoregressive rainfall

Multiplicative autoregressive rainfall
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Uniform Rainfall on a Lattice

Consider uniform i.i.d. rainfall over [0, 1000] MW

Discrete approximation for rainfall on node (t , k) of lattice:

Rt ,k = 50 · wt ,k
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Additive Autoregressive Model for Rainfall

Consider additive autoregressive model for rainfall:

Rt = Rt−1 + 100 · εt ,

with εt standard normal independent identically distributed

Discrete approximation for rainfall on node (t , k) of the lattice:

Rt ,k = Rt−1 + 100 · Φ−1(
wt ,k

20
− 0.025),
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Multipicative Autoregressive Model for Rainfall

Consider multiplicative autoregressive model for rainfall:

Rt = Rt−1 · ηt ,

with ηt normal independent identically distributed, with mean 1,
standard deviation 0.1

Discrete approximation for rainfall on node (t , k) of the lattice:

Rt ,k = Rt−1 · (1 + 0.1 · Φ−1(
wt ,k

20
− 0.025)),
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Example: Lattice Model for Rainfall

Initial rainfall: 500 MW

Same lattice for all models

Rain trajectories correspond to identical trajectory of w[t]

on the lattice
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Problem Data

Consider the following hydrothermal planning problem:

Horizon: 24 months

Time step: 1 month

Constant demand: 1000 MW

Marginal cost of thermal production: 25 $/MWh

Capacity of thermal units: 500 MW

Value of lost load: 1000 $/MWh

Reservoir storage capacity: 1000 MWh

Initial reservoir level: 700 MWh
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Notation

p, q: thermal/hydro production

l : unserved demand

xt : amount of stored hydro at the beginning of period t
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The NLDS for Uniformly Distributed Rainfall

Assume i.i.d. rainfall, uniformly distributed in [0, 1000] MW

NLDS(t , k) = min 1000 · l + 25 · p

s.t. l + p + q ≥ 1000

p ≤ 500

q ≤ xt−1 + Rt ,k

x = xt−1 + Rt ,k − q

x ≤ 1000

l ,p,q, x ≥ 0

where Rt ,k is the rainfall
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Premature Convergence

Settings:

Convergence for K = 10 samples in forward pass

Confidence interval: (z̄ − 2σ, z̄ + 2σ)

Iteration
1 2 3

V
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Lower bound
Mean Costs
67% confidence interval
95% confidence interval
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Termination information:

z = 324,594 $

z̄ = 722,350 $

s = 817,923 $

which satisfies criterion z = (z̄ − 2 s√
K
, z̄ + 2 s√

K
)

... however, running a forward pass with K = 200 samples after
convergence gives very different estimates:

z = 657,697 $

z̄ = 770,440 $

s = 602,680 $

which violates criterion z = (z̄ − 2 s√
K
, z̄ + 2 s√

K
)

Conclusion: small K can lead to premature convergence due
to large confidence interval, not z ' z̄
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Selecting Appropriate K

Select K so as to achieve a 15% optimality criterion with 95%
confidence:

K = (
2 · s

0.15 · z̄
)2 = (

2 · 602,680
0.15 · 770,440

)2 ' 109
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Monte Carlo sample size: K = 150
Convergence in 4 iterations, after which point z̄ stabilizes

Iteration
0 2 4 6 8 10

V
al

ue

×106

-1

0

1

2

3
Lower bound
Mean Costs
67% confidence interval
95% confidence interval
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Value Functions

Note:

V1(x) ≥ V12(x)

V1 exhibits constant slope, V12 is more "interesting"
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Dispatch Policy
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The NLDS for Additive Autoregressive Rainfall

NLDS(t , k) : min 1000 · l + 25 · p

s.t. l + p + q ≥ 1000

p ≤ 500

q ≤ xt−1 + r

x = xt−1 + r − q

x ≤ 1000

r ≤ rt−1 + ht ,k

l ,p ≥ 0

54 / 62



Some Observations on the NLDS

Stochastic disturbance: ht ,k = 100Φ−1(
wt,k
20 − 0.025)

New state variable rt : rainfall in beginning of period t

Non-negativity of x ,q, r has been lifted in order to ensure
feasibility

The model can capture temporal dependency of rainfall, but ...

State vector dimension increases

The rainfall may become negative!
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Convergence with Additive Autoregressive Rainfall

SDDP settings:

K = 150

Confidence interval: (z̄ − 2σ, z̄ + 2σ)

Iteration
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Dispatch Policy

Time stage
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Observations on Dispatch Policy

Optimal policy attempts to balance minimization of thermal
generator dispatch with risk of depleting reservoir capacity

Autoregressive behavior of the rainfall results in more
aggressive dispatch of hydro in periods of high rainfall (e.g.
periods 2-5)

Unfavorable rainfall outcomes may result in negative hydro
dispatch q and rainfall r → can be corrected by
multiplicative autoregressive models
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The NLDS for Multiplicative Autoregressive Rainfall

NLDS(t , k) = min 1000 · l + 25 · p

s.t. l + p + q ≥ 1000

p ≤ 500

q ≤ xt−1 + r

x = xt−1 + r − q

x ≤ 1000

r = rt−1 · ht ,k

l ,p,q, r , x ≥ 0
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Some Observations on the NLDS

Stochastic disturbance: ht ,k = 1 + 0.1 · Φ−1(
wt,k
20 − 0.025)

State variable rt : rainfall in beginning of period t

The variables x ,q, r are non-negative, without causing
NLDS to be infeasible

The model can capture temporal dependency of rainfall, without
rainfall becoming negative
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Convergence with Multiplicative Autoregressive Rainfall

SDDP settings:

K = 150

Confidence interval: (z̄ − 2σ, z̄ + 2σ)

Iteration
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Dispatch Policy
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