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The Nested L-Shaped Decomposition Subproblem

Foreach stage t =1,...,H —1,scenario k = 1,..., ||

NLDS(t, k) : min(cix)"x + 6

() WikX = hek — Te1 kXe—1, At k)

(pj) : EtkjX+0>etxjj=1,.... 1k (1)

(o) Dixjx > dikji=1,..., 8tk (2)
x>0

@ =[;: support of

@ A(t, k): ancestor of node k at stage ¢
@ X;_1 A(tk)- current solution from A(t, k)
@ Constraints (2): feasibility cuts

@ Constraints (1): optimality cuts



Nested L-Shaped Method

Building block: NLDS(t, k): problem at stage t, scenario k

Ttk Ptk Otk Xtk
Cut — NLDS(t,k) —— Trial solution
t_17A(tak) t+1!D(t7k)

@ A(t, k): ancestor of outcome k in period t

@ D(t, k): descendants of outcome k in period ¢



@ Node: (t=1,k=1)
@ Direction: forward

@ Output: xq 1
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@ Nodes: (t=2,k), k € {1,2}
@ Direction: forward
@ Output: xo , k € {1,2}
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@ Nodes: (t = 3,k), k € {1,2,3,4}
@ Direction: backward
@ Output: (734, p3 k;03k), k € {1,2,3,4}
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@ Nodes: (t=2,k), k € {1,2}
@ Direction: backward
@ Output: (124, p2.k, o2,k), kK € {1,2}
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Feasibility Cuts

If NLDS(t, k) is infeasible, solver returns (r,01,...,0s,,) with
0j>0,j=1,..., 8 such that:

© 7' (hek — T—1 kXt—1,A(tK)) + Z,St:ﬁ of diij>0

° 7TTW”(+Z/ 10} TDixj<0
The following is a valid feasibility cut for NLDS(t — 1, a(k)):

(FC) : Di—1 At )X < di—1,at.k)

where
.
Di 14ty = 7 Ttk
St,k
T T
A1a0k) = T htk+zaj Otk j
=
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Optimality Cuts

For all k € D;_4 j, solve NLDS(t, k), then compute

Ei 1= Z pe(klf) - (mex) " Teo1k

keD(t—1,)

€1, = Z pe(kl) - ((mex) " heg +
keD(t—1,))

It k St k

Z PtT,k,/et,k,i + Z Ut-{-det,k,i)
i—1 i—1

The following is an optimality cut for NLDS(t — 1, j):

Ei1jx+0>e1,
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Nested Decomposition Is Non-Scalable

Assume
@ H time steps, |S;| discrete outcomes in each stage
@ No infeasibility cuts

S| =1 [S2| =2 [S3]| =4

o Forward pass: |Si| + [Si] -S| + ... = Y15 NE_,|S)|
@ Backward pass: Y./, n_[Sjl
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Was Nested Decomposition any Good?

Alternative to nested decomposition is extended form
@ Extended form will not even load in memory

@ Nested decomposition will load in memory, but will not
terminate (for large problems)

But: nested Decomposition lays the foundations for SDDP
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Making Nested Decomposition Scalable

Solution for forward pass
@ In the forward pass, we simulate instead of enumerating

@ This results in a probabilistic upper bound / termination
criterion

Solutions for backward pass

@ In the backward pass, we share cuts among nodes of the
same time period

@ This can only be done on a lattice
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Enumerating Versus Simulating

@ Enumeration: {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2,
3), (2, 4))}
@ Simulation (with 3 samples): {(1, 3), (2, 1), (1, 4)}
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Scenario Tree without Cut Sharing

Dashed box represents storage of a different value function
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Cut Sharing in a Lattice

Dashed box represents storage of a different value function
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Serial Independence

A process satisfies serial independence if, for every stage t, &;
has a probability distribution that does not depend on the
history of the process, i.e. one can define a probability measure
p:(i) at each stage t, such that

P§t(w) = il€t—1)(w)] = pe(i), VE[t—1] € Z[t—1], [ € =t
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Checking for Serial Independence

Values on arcs indicate transition probabilities, values in nodes
indicate realization of &;

Which scenario tree(s) obey(s) serial independence
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Cut Sharing with Serial Independence

Dashed box represents storage of a different value function

Intuition: problem is identical from t onwards, independently of
node k in stage t
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Combining Sampling and Optimization in SDDP

Sampling: Generate K samples of random process
(61,i7"'a§H,i)s I = 17"'7K

Optimization: Solve NLDS in order to generate trial decisions
Xt it
min ¢/ x + 0
() : Ti—qkXe—1,i + WikXx = bk
(p): Etxx+0-12> ek
x>0
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Implications for Forward Pass

Denote X;; as trial decision

@ At each forward pass, we solve H — 1 NLDS problems

@ For K samples of &}, we solve 1 + K - (H — 2) linear
programs
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Implications for Backward Pass

Denote (7 i, pt.k,i) @s dual multipliers generated by trial i

@ For a given trial sequence x4}, solve Zl’,”:z |=¢| linear
programs
@ For K trial sequences, solve KZ?’Zz |=¢| linear programs
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SDDP Forward Pass

@ Solve NLDS(1). Let x; be the optimal solution. Initialize
Xi=xifori=1,... K
@ Repeatfort=2,....H,i=1,... K
e Sample an outcome &; ; from the set =;
e Solve NLDS(t, i) with trial decision X;_1
e Store the optimal solution as X;
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SDDP Backward Pass

@ Repeatfort=H H-1,...,2
@ Repeatfori=1,....K
@ Repeatfork=1,...,|=
Solve NLDS(t, k) with trial decision %X;_+
@ Forallj=1,...,|=i4|, compute

|Z¢]

Ei1)i= Zpr(klj) : 7TzT,k,iTr—1,k7
k=1
|=t]
e-1,ij = Y Pe(Kli) - (w{k Mk + plki€k)
k=1
@ Add the optimality cut
Et1jiXx+02> €1

to every NLDS(t —1,j),j=1,...,|=t-1]
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Reusing Multipliers

The propagation of cuts does not require serial independence,
can also be done on a lattice

€115 — Etliflj |¥*’

gj
- Et2ix —

Lt i

(T4 10,05 Pe1,k,i)

€24
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Number of Forward Samples K

Increasing K implies
@ faster learning of value function (+)
@ more LPs solved at each forward-backward pass (-)
o faster growth of NLDS (-)

Want to use large K in later forward passes (why?)
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Terminating SDDP

We have argued that terminating nested decomposition with an
exact solution is impractical

Alternative: terminate when upper bound ~ upper bound
@ Lower bound: objective function value of NLDS(1), since
NLDS(1) solves for
e underestimate of Va(x)
e in superset of dom V,(x)

z=min¢{ x+ 6
x,0

)

st.Ax=0»>
Eix+60-1> ¢
x>0

@ Upper bound: probabilistic
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Central Limit Theorem

Suppose {Xi, Xz, ...} is a sequence of independent identically
distributed random variables with E[Xj] = . and
Var[Xi] = 0® < co. Then

ﬁ((lE_;X) —u) % N(O, 0?).

where N(;,02) denotes a normal distribution with mean p and
variance o2
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Example: Flipping Coins
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@ Flip a coin K times and count fraction of heads
@ Repeat 10000 times, record histogram
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Probabilistic Upper Bound

Suppose we draw a sample / of {[;;; and perform a forward pass
@ This gives us avector X;;, t =1,...,H
@ We can compute a cost for this vector zx = Y1 | ¢ i%.;

@ If we repeat this K times, we get a distribution of
independent, identically distributed costs z;,i =1,.... K

e By the Central Limit Theorem, z = % 3K, z converges to
a Gaussian with standard deviation estimated by

1 K
o=\ G) Yz - 27
k=

1

@ Each sequence X is feasible, but not necessarily optimal,
so z is an estimate of an upper bound
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Bounds and Pereira Termination Criterion

After solving NLDS(1) in a forward pass, we can compute a
lower bound z
After completing a forward pass, we can compute

H
zi = th,ixt,i
t=1

) 1E
Z—KEZ,'

;K
K2 Z(Zi - z)?
i=1

Terminate if z € (z — 20, Z + 20), which is the 95.4% confidence
interval of z

)
Il
_
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Graphical lllustration of Pereira Termination Criterion

Probability

/

\

Objective
function
value
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Size of Monte Carlo Sample

How can we ensure 1% optimality gap with 95.4% confidence?

@ Choose K such that 20 ~ 0.01 - z

@ Mean Z and variance s? depend (asymptotically) on the
statistical properties of the process, not K

Il
N

@ Set
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Full SDDP Algorithm

@ Initialize: Z=00,0 =0
@ Forward pass

e Store z'8 and z
o If z'8 € (z — 20,z + 20) terminate, else go to backward
pass

@ Backward pass
@ Go to forward pass
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We will use a lattice with
@ 24 stages (1 month per stage)

@ 20 nodes, random disturbance w; x takes a value in

{1,2,...,20}
@ uniformly distributed (w; x equally likely to take any value in
{1,2,...,20})

in order to develop three different rainfall models:
@ Uniformly distributed rainfall
@ Additive autoregressive rainfall

@ Multiplicative autoregressive rainfall
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Uniform Rainfall on a Lattice

Consider uniform i.i.d. rainfall over [0, 1000] MW

Discrete approximation for rainfall on node (t, k) of lattice:

Rk =50 - w;
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Additive Autoregressive Model for Rainfall

Consider additive autoregressive model for rainfall:

R: = Ri_1 + 100 - ¢,
with ¢; standard normal independent identically distributed
Discrete approximation for rainfall on node (t, k) of the lattice:

Rix = Ri_1 +100- &~ (20 — 0.025),
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Multipicative Autoregressive Model for Rainfall

Consider multiplicative autoregressive model for rainfall:
Rt = Rt_1 - nt,

with n; normal independent identically distributed, with mean 1,
standard deviation 0.1

Discrete approximation for rainfall on node (t, k) of the lattice:

Rk = Rr_t - (1+0.1 -¢—1(%" ~0.025)),
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Example: Lattice Model for Rainfall

Initial rainfall: 500 MW

1000

—— Uniform
— AR additive
— AR multiplicative

Rainfall [MW]
@
=]
S

2 /‘& i; g 16 1‘2 1‘4 1‘6 18 20 22 24
Time stage
@ Same lattice for all models

@ Rain trajectories correspond to identical trajectory of wi
on the lattice
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Problem Data

Consider the following hydrothermal planning problem:
@ Horizon: 24 months
@ Time step: 1 month
@ Constant demand: 1000 MW
@ Marginal cost of thermal production: 25 $/MWh
@ Capacity of thermal units: 500 MW
@ Value of lost load: 1000 $/MWh
@ Reservoir storage capacity: 1000 MWh

@ Initial reservoir level: 700 MWh
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@ p, q: thermal/hydro production
@ /: unserved demand

@ x;: amount of stored hydro at the beginning of period t
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The NLDS for Uniformly Distributed Rainfall

Assume i.i.d. rainfall, uniformly distributed in [0, 1000] MW

NLDS(t,k) = min1000 -/ + 25 - p
st./+p+qg>1000
p < 500
q < X1+ Rk
X=Xt1+Rxk—q
x <1000
l,p,q,x >0

where R; k is the rainfall
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Premature Convergence

Settings:
@ Convergence for K = 10 samples in forward pass

@ Confidence interval: (z — 20,2z + 20)

4 108
- —Lower bound
—Mean Costs
3L ‘\ --'67% confidence interval
R -~ 95% confidence interval

g
s2f
>

10

0 .

1 2 3

Iteration
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Termination information:

@ 2z2=324594%
@ z=722,350%
@ s=817,923 %

which satisfies criterionz = (z - 22,z + 2

)

ﬂ
:

.. however, running a forward pass with K = 200 samples after
convergence gives very different estimates:

@ z=657,697 $
@ 2=770,440%
@ 5=602,680 %

which violates criterionz = (z - 22,z + 2-% )

\/>7

Conclusion: small K can lead to premature convergence due
to large confidence interval, notz ~ z
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Selecting Appropriate K

Select K so as to achieve a 15% optimality criterion with 95%
confidence:

2-s 2-602,680

— 2 _ 2
K= (0.15-2) B (0.15-770,440)

~ 109
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@ Monte Carlo sample size: K = 150
@ Convergence in 4 iterations, after which point Z stabilizes

3 106\
—Lower bound
—Mean Costs
27 ---67% confidence interval
--—95% confidence interval
g
C>U 1 N e
0 L
-1 ‘ L L w |
0 2 4 6 8 10

Iteration
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Value Functions

Note:
@ Vi(x) > Via(x)

@ V4 exhibits constant slope, Vi, is more "interesting”

x10°

Value function V(x) [$]

0 200 400 600 800 1000
Reservoir level x [MW]
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Dispatch Policy

1500 1000
—Hydro =
—Thermal g 500
5 —Hydro + Thermal =
Z 1000 8
5 g °
é < -500
§ 500 % —Reservoir level [MWh]
2 -1000 —Hydro release [MW]
g —Hydro inflow [MW]
0 -1500
0 5 10 15 20 0 5 10 15 20 25
Time stage Time stage

Left panel: dispatch of hydro and thermal power
Right panel: management of reservoir level
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The NLDS for Additive Autoregressive Rainfall

NLDS(t,k): min1000-/+25-p
st./+p+qg>1000
p <500
g<X-1+r
X=X_1+r—q
x <1000
r<r1+hk
ILLp>0
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Some Observations on the NLDS

@ Stochastic disturbance: hy = 1000~ (%" —0.025)
@ New state variable r;: rainfall in beginning of period t

@ Non-negativity of x, g, r has been lifted in order to ensure
feasibility

The model can capture temporal dependency of rainfall, but ...
@ State vector dimension increases

@ The rainfall may become negative!
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Convergence with Additive Autoregressive Rainfall

SDDP settings:
@ K=150
@ Confidence interval: (z — 20,z + 20)

4 10°
3 L
R RN
=2
> .
—Lower bound
1r —NMean Costs
-——67% confidence interval
~—95% confidence interval
0 . . : : )
0 2 4 6 8 10

Iteration
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Dispatch Policy

1500 1500
—Hydro =
—Thermal = 1000
= —Hydro + Thermal /\_/\ =
émoo ? 500
s i 0
] = —Reservoir level [MWh]
B s00 % 500 Hydro release [MW]
o 5 ~——Hydro inflow [MW]
E-looo w
0 -1500
0 5 10 15 20 25 0 5 10 15 20 25

Time stage Time stage

Left panel: dispatch of hydro and thermal power
Right panel: management of reservoir level
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Observations on Dispatch Policy

@ Optimal policy attempts to balance minimization of thermal
generator dispatch with risk of depleting reservoir capacity

@ Autoregressive behavior of the rainfall results in more
aggressive dispatch of hydro in periods of high rainfall (e.g.
periods 2-5)

@ Unfavorable rainfall outcomes may result in negative hydro
dispatch g and rainfall r — can be corrected by
multiplicative autoregressive models
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The NLDS for Multiplicative Autoregressive Rainfall

NLDS(t, k) =

min1000-/+25-p
st./+p+qg>1000
p <500
q=Xt_1+Tr
X=X_1+r—gq

x <1000
r=r1-hg

l,p,q,r,x >0
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Some Observations on the NLDS

@ Stochastic disturbance: hyx =1+ 0.1- ¢! (%" —0.025)
@ State variable r;: rainfall in beginning of period t

@ The variables x, g, r are non-negative, without causing
NLDS to be infeasible

The model can capture temporal dependency of rainfall, without
rainfall becoming negative
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Convergence with Multiplicative Autoregressive Rainfall

SDDP settings:
e K=150
@ Confidence interval: (z — 20,z + 20)

5

2010
151
g
< 10
>
—Lower bound
5 —Mean Costs
~——67% confidence interval
~—95% confidence interval
0 . ; ,
0 6 8 10
Iteration
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Dispatch Policy

1000 1000
g
e N
800 § N
= = s00f o ~
2 5
= 2
= 600 2 —Reservoir level [MWh]
S u 0f |—Hydro release [MW]
é 400 = —Hydro inflow [MW]
3 =
o P
200|—Hydro g S0
—Thermal 2
o ——Hydro + Thermal 1000
0 5 10 15 20 25 0 5 10 15 20 25
Time stage Time stage

Left panel: dispatch of hydro and thermal power
Right panel: management of reservoir level
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