Linear Programming

Operations Research

Anthony Papavasiliou

Contents

(1) Primal Linear Program
(2) Dual Linear Program

Our Focus: $z(b)$

We care about how the optimal value of a linear program depends on the right-hand side parameters b :

$$
\begin{aligned}
z(b)= & \min c^{T} x \\
& \text { s.t. } A x=b \\
& x \geq 0
\end{aligned}
$$

Main Takeaway of These Slides

The function $z(b)$ is a piecewise linear function of b
We will show this using

- the primal linear program, and
- its dual linear program

Table of Contents

(1) Primal Linear Program

2 Dual Linear Program

Linear Programs in Standard Form

Linear program (LP) in standard form:

$$
\begin{aligned}
(P): & \min z=c^{T} x \\
& \text { s.t. } A x=b \\
& x \geq 0
\end{aligned}
$$

where $x \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

Any LP can be expressed in standard form

Solution of an LP

Solution: a vector x such that $A x=b$

Feasible solution: a solution with $x \geq 0$

Optimal solution: a feasible solution x^{\star} such that $c^{\top} x^{\star} \leq c^{\top} x$ for all feasible solutions x

Basis and Basic Solution

Basis: a choice of n linearly independent columns of A

Denote $A=[B, N]$ where N are non-basic columns
Each basis corresponds to a basic solution $\left[\begin{array}{l}x_{B} \\ x_{N}\end{array}\right]$ with
$x_{B}=B^{-1} b$ and $x_{N}=0$

Geometric property: Basic feasible solutions correspond to extreme points of the feasible region $\{x \mid A x=b, x \geq 0\}$

A basis is

- feasible if $B^{-1} b \geq 0$
- optimal if feasible and $c_{N}^{T}-c_{B}^{T} B^{-1} N \geq 0$

Optimal Basis

Claim: $\left[\begin{array}{c}x_{B} \\ x_{N}\end{array}\right]$ is optimal if $B^{-1} b$ and $c_{N}^{T}-c_{B}^{T} B^{-1} N \geq 0$
Proof: $\left[\begin{array}{c}x_{B} \\ x_{N}\end{array}\right]$ is obviously feasible, can we improve objective function by moving away from it?

Idea: substitute basic variables for non-basic variables in objective function $c^{T} x$:

$$
\begin{align*}
{\left[\begin{array}{ll}
B & N
\end{array}\right]\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right] } & =b \Leftrightarrow \\
B x_{B}+N x_{N} & =b \Leftrightarrow \\
x_{B} & =B^{-1}\left(b-N x_{N}\right) \tag{1}
\end{align*}
$$

Substituting equation (1) into the objective function,

$$
\begin{align*}
c^{T} x & =c_{B}^{T} x_{B}+c_{N}^{T} x_{N} \\
& =c_{B}^{T} B^{-1} b+\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right) x_{N} \tag{2}
\end{align*}
$$

- Non-basic variables can only increase when moving away from the current solution while remaining feasible
- Since $c_{N}^{T}-c_{B}^{T} B^{-1} N \geq 0$, second term of equation (2) can only increase when moving in the neighborhood of the current solution \Rightarrow current solution is locally optimal
- We will show later that $z(b)$ must be convex, therefore from equation (2) it must be piecewise linear

Example: The Diet Problem

Problem: Choose 3 dishes (x_{1}, x_{2}, x_{3}) so as to satisfy nutrient requirements b_{1} and b_{2}, while minimizing cost (dishes cost $1 \$$, $2 \$$, and $1 \$$ respectively)

Table: The unit of nutrients in each dish.

	Dish 1	Dish 2	Dish 3
Nutrient 1	0.5	4	1
Nutrient 2	2	1	2

$$
\begin{array}{ll}
\min & x_{1}+2 x_{2}+x_{3} \\
\text { s.t. } & 0.5 x_{1}+4 x_{2}+x_{3}=b_{1} \\
& 2 x_{1}+x_{2}+2 x_{3}=b_{2} \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Example: The Diet Problem - Basic Solutions

Three possible bases:

$$
B_{1}=\left[\begin{array}{cc}
0.5 & 4 \\
2 & 1
\end{array}\right], B_{2}=\left[\begin{array}{cc}
0.5 & 1 \\
2 & 2
\end{array}\right], B_{3}=\left[\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right]
$$

Three candidate basic solutions, (parametrized on $\left(b_{1}, b_{2}\right)$):

$$
\begin{aligned}
& x_{B_{1}}=\left[\begin{array}{c}
-0.1333 b_{1}+0.5333 b_{2} \\
0.2667 b_{1}-0.0667 b_{2}
\end{array}\right] \\
& x_{B_{2}}=\left[\begin{array}{c}
-2 b_{1}+b_{2} \\
2 b_{1}-0.5 b_{2}
\end{array}\right] \\
& x_{B_{3}}=\left[\begin{array}{c}
0.2857 b_{1}-0.1429 b_{2} \\
-0.1429 b_{1}+0.5714 b_{2}
\end{array}\right]
\end{aligned}
$$

We want to understand how the objective function behaves as we change b

Example: Reduced Costs for the Diet Problem

Before starting, compute the reduced cost $c_{N}^{T}-c_{B}^{T} B^{-1} N$ for each basis:

- Basis B_{1} : -0.2
- Basis $B_{2}: 1.5$
- Basis $B_{3}: 0.2143$

Example: The Diet Problem - Basic Feasible Solutions

In order for a basic solution to be feasible, it is necessary that b be such that $x_{B} \geq 0$

Denote $R_{i}=\left\{\left(b_{1}, b_{2}\right): x_{B_{i}} \geq 0\right\}$, then:

$$
\begin{aligned}
& R_{1}=\left\{0.25 b_{1} \leq b_{2} \leq 4 b_{1}\right\} \\
& R_{2}=\left\{2 b_{1} \leq b_{2} \leq 4 b_{1}\right\} \\
& R_{3}=\left\{0.25 b_{1} \leq b_{2} \leq 2 b_{1}\right\}
\end{aligned}
$$

Example: The Diet Problem - Basic Optimal Solutions

Cost of each basic solution, parametric on $\left(b_{1}, b_{2}\right)$:

$$
\begin{aligned}
c_{B_{1}}^{T} x_{B_{1}} & =0.4 b_{1}+0.4 b_{2} \\
c_{B_{2}}^{T} x_{B_{2}} & =0.5 b_{2} \\
c_{B_{3}}^{T} x_{B_{3}} & =0.4286 b_{1}+0.2857 b_{2}
\end{aligned}
$$

If a basis is feasible and has negative reduced cost, then it results in an optimal solution

From this we can infer regions over which B_{2} and B_{3} are optimal

Example: The Diet Problem - The Function $z(b)$

$z(b)$ is piecewise linear convex function of b

Table of Contents

(1) Primal Linear Program

(2) Dual Linear Program

Dual LP

The dual of problem (P) is the following linear program:

$$
\begin{aligned}
(D): & \max \pi^{T} b \\
& \text { s.t. } \pi^{T} A \leq c^{T}
\end{aligned}
$$

If primal problem is not in standard form, use the following rules

Primal	Minimize	Maximize	Dual
Constraints	$\geq b_{i}$	≥ 0	Variables
	$\leq b_{i}$	≤ 0	
	$=b_{i}$	Free	
Variables	≥ 0	$\leq c_{j}$	Constraints
	≤ 0	$\geq c_{j}$	
	Free	$=c_{j}$	

Example: Dual of the Diet Problem

Recall the diet problem:

$$
\begin{array}{ll}
\min & x_{1}+2 x_{2}+x_{3} \\
\text { s.t. } & 0.5 x_{1}+4 x_{2}+x_{3}=b_{1} \\
& 2 x_{1}+x_{2}+2 x_{3}=b_{2} \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Using the table in the previous slide, the dual is:

$$
\begin{array}{ll}
\max & b_{1} \pi_{1}+b_{2} \pi_{2} \\
\text { s.t. } & 0.5 \pi_{1}+2 \pi_{2} \leq 1 \\
& 4 \pi_{1}+\pi_{2} \leq 2 \\
& \pi_{1}+2 \pi_{2} \leq 1
\end{array}
$$

Example: Dual of the Diet Problem - Feasible Region

Figure: The dual feasible region of the diet problem. Each black dot is a basic solution of the dual feasible region and corresponds to a basis of the primal problem in standard form.

Revisiting $z(b)$

Recall that we care about how the optimal value of a linear program depends on the right-hand side parameters b :

$$
\begin{aligned}
z(b)= & \min c^{\top} x \\
& \text { s.t. } A x=b \\
& x \geq 0
\end{aligned}
$$

Rewriting the Dual Problem

Claim: $z(b)$ is a piecewise linear convex function
Proof: If a dual optimal solution exists, then one dual basic solution ${ }^{1}$ must be optimal

Reformulation of the dual problem:

$$
\max _{i=1, \ldots, r} \pi_{i}^{T} b
$$

where r indexes finitely many basic feasible solutions

[^0]
Computing Dual Basic Solutions

For linear programs in standard form, each basis B of the primal coefficient matrix A corresponds to a basic solution of the dual feasible set, according to the relationship

$$
\pi^{T}=c_{B}^{T} B^{-1}
$$

and vice versa

Example: Dual of the Diet Problem - Basic Solutions

Recall the three possible bases of the diet problem:

$$
B_{1}=\left[\begin{array}{cc}
0.5 & 4 \\
2 & 1
\end{array}\right], B_{2}=\left[\begin{array}{cc}
0.5 & 1 \\
2 & 2
\end{array}\right], B_{3}=\left[\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right]
$$

Basic solutions of the dual feasible region can be computed according to $\pi=c_{B}^{\top} B^{-1}$:

$$
\pi_{1}=(0.4,0.4), \pi_{2}=(0,0.5), \pi_{3}=(0.4286,0.2857)
$$

[^0]: ${ }^{1}$ General definition of basic solution for a polyhedron $P \subset \mathbb{R}^{n}$ (not necessarily in standard form) that is defined by linear equalities and inequalities: a vector x such that (i) all equality constraints are active and (ii) out of the constraints that are active at x, n are linearly independent

