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Our Focus: z(b)

We care about how the optimal value of a linear program
depends on the right-hand side parameters b:

z(b) = min cT x

s.t. Ax = b

x ≥ 0
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Main Takeaway of These Slides

The function z(b) is a piecewise linear function of b

We will show this using

the primal linear program, and

its dual linear program

4 / 24



Table of Contents

1 Primal Linear Program

2 Dual Linear Program

5 / 24



Linear Programs in Standard Form

Linear program (LP) in standard form:

(P) : min z = cT x

s.t. Ax = b

x ≥ 0

where x ∈ Rn, c ∈ Rn, A ∈ Rm×n, b ∈ Rm

Any LP can be expressed in standard form
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Solution of an LP

Solution: a vector x such that Ax = b

Feasible solution: a solution with x ≥ 0

Optimal solution: a feasible solution x? such that cT x? ≤ cT x
for all feasible solutions x
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Basis and Basic Solution

Basis: a choice of n linearly independent columns of A

Denote A = [B,N] where N are non-basic columns

Each basis corresponds to a basic solution

[
xB

xN

]
with

xB = B−1b and xN = 0

Geometric property: Basic feasible solutions correspond to
extreme points of the feasible region {x |Ax = b, x ≥ 0}

A basis is

feasible if B−1b ≥ 0

optimal if feasible and cT
N − cT

B B−1N ≥ 0
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Optimal Basis

Claim:

[
xB

xN

]
is optimal if B−1b and cT

N − cT
B B−1N ≥ 0

Proof:

[
xB

xN

]
is obviously feasible, can we improve objective

function by moving away from it?

Idea: substitute basic variables for non-basic variables in
objective function cT x :

[ B N ]

[
xB

xN

]
= b ⇔

BxB + NxN = b ⇔

xB = B−1(b − NxN) (1)
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Substituting equation (1) into the objective function,

cT x = cT
B xB + cT

NxN

= cT
B B−1b + (cT

N − cT
B B−1N)xN (2)

Non-basic variables can only increase when moving away
from the current solution while remaining feasible

Since cT
N − cT

B B−1N ≥ 0, second term of equation (2) can
only increase when moving in the neighborhood of the
current solution⇒ current solution is locally optimal

We will show later that z(b) must be convex, therefore from
equation (2) it must be piecewise linear
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Example: The Diet Problem

Problem: Choose 3 dishes (x1, x2, x3) so as to satisfy nutrient
requirements b1 and b2, while minimizing cost (dishes cost 1 $,
2 $, and 1 $ respectively)

Table: The unit of nutrients in each dish.

Dish 1 Dish 2 Dish 3
Nutrient 1 0.5 4 1
Nutrient 2 2 1 2

min x1 + 2x2 + x3

s.t. 0.5x1 + 4x2 + x3 = b1

2x1 + x2 + 2x3 = b2

x1, x2, x3 ≥ 0
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Example: The Diet Problem - Basic Solutions

Three possible bases:

B1 =

[
0.5 4
2 1

]
,B2 =

[
0.5 1
2 2

]
,B3 =

[
4 1
1 2

]

Three candidate basic solutions, (parametrized on (b1,b2)):

xB1 =

[
−0.1333b1 + 0.5333b2

0.2667b1 − 0.0667b2

]

xB2 =

[
−2b1 + b2

2b1 − 0.5b2

]

xB3 =

[
0.2857b1 − 0.1429b2

−0.1429b1 + 0.5714b2

]
We want to understand how the objective function behaves as
we change b
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Example: Reduced Costs for the Diet Problem

Before starting, compute the reduced cost cT
N − cT

B B−1N for
each basis:

Basis B1: -0.2

Basis B2: 1.5

Basis B3: 0.2143
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Example: The Diet Problem - Basic Feasible Solutions

In order for a basic solution to be feasible, it is necessary that b
be such that xB ≥ 0

Denote Ri = {(b1,b2) : xBi ≥ 0}, then:

R1 = {0.25b1 ≤ b2 ≤ 4b1}

R2 = {2b1 ≤ b2 ≤ 4b1}

R3 = {0.25b1 ≤ b2 ≤ 2b1}
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Example: The Diet Problem - Basic Optimal Solutions

Cost of each basic solution, parametric on (b1,b2):

cT
B1

xB1 = 0.4b1 + 0.4b2

cT
B2

xB2 = 0.5b2

cT
B3

xB3 = 0.4286b1 + 0.2857b2

If a basis is feasible and has negative reduced cost, then it
results in an optimal solution

From this we can infer regions over which B2 and B3 are optimal

15 / 24



Example: The Diet Problem - The Function z(b)

z(b) is piecewise linear convex function of b
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Dual LP

The dual of problem (P) is the following linear program:

(D) : maxπT b

s.t. πT A ≤ cT

If primal problem is not in standard form, use the following rules

Primal Minimize Maximize Dual
Constraints ≥ bi ≥ 0 Variables

≤ bi ≤ 0
= bi Free

Variables ≥ 0 ≤ cj Constraints
≤ 0 ≥ cj

Free = cj
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Example: Dual of the Diet Problem

Recall the diet problem:

min x1 + 2x2 + x3

s.t. 0.5x1 + 4x2 + x3 = b1

2x1 + x2 + 2x3 = b2

x1, x2, x3 ≥ 0

Using the table in the previous slide, the dual is:

max b1π1 + b2π2

s.t. 0.5π1 + 2π2 ≤ 1

4π1 + π2 ≤ 2

π1 + 2π2 ≤ 1
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Example: Dual of the Diet Problem - Feasible Region

Figure: The dual feasible region of the diet problem. Each black dot is
a basic solution of the dual feasible region and corresponds to a basis
of the primal problem in standard form.
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Revisiting z(b)

Recall that we care about how the optimal value of a linear
program depends on the right-hand side parameters b:

z(b) = min cT x

s.t. Ax = b

x ≥ 0
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Rewriting the Dual Problem

Claim: z(b) is a piecewise linear convex function

Proof: If a dual optimal solution exists, then one dual basic
solution1 must be optimal

Reformulation of the dual problem:

max
i=1,...,r

πT
i b

where r indexes finitely many basic feasible solutions

1General definition of basic solution for a polyhedron P ⊂ Rn (not
necessarily in standard form) that is defined by linear equalities and
inequalities: a vector x such that (i) all equality constraints are active and (ii)
out of the constraints that are active at x , n are linearly independent
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Computing Dual Basic Solutions

For linear programs in standard form, each basis B of the
primal coefficient matrix A corresponds to a basic solution of
the dual feasible set, according to the relationship

πT = cT
B B−1

and vice versa
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Example: Dual of the Diet Problem - Basic Solutions

Recall the three possible bases of the diet problem:

B1 =

[
0.5 4
2 1

]
,B2 =

[
0.5 1
2 2

]
,B3 =

[
4 1
1 2

]

Basic solutions of the dual feasible region can be computed
according to π = cT

B B−1:

π1 = (0.4,0.4), π2 = (0,0.5), π3 = (0.4286,0.2857)
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