Lagrange Relaxation: Duality Gaps and Primal Solutions Operations Research

Anthony Papavasiliou

Contents

- Context
- 2 Duality Gap
 - Zero Duality Gap
 - Bounding the Duality Gap
- Recovering Primal Solutions

Table of Contents

- Context
- 2 Duality Gap
 - Zero Duality Gap
 - Bounding the Duality Gap
- Recovering Primal Solutions

When to Use Lagrange Relaxation

Consider the following optimization problem:

$$p^* = \max f_0(x)$$

$$f(x) \le 0$$

$$h(x) = 0$$

with $x \in \mathcal{D} \subset \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^m$, $h : \mathbb{R}^n \to \mathbb{R}^l$

Context for Lagrange relaxation:

- Complicating constraints $f(x) \le 0$ and h(x) = 0 make the problem difficult
- Dual function is relatively easy to evaluate

$$g(u, v) = \sup_{x \in \mathcal{D}} (f_0(x) - u^T f(x) - v^T h(x))$$
 (1)

Idea of Dual Decomposition

- Dual function g(u, v) is convex *regardless* of primal problem
- Computation of g(u, v), $\pi \in \partial g(u, v)$ is relatively easy
- But... g(u, v) may be non-differentiable

Idea: minimize g(u, v) using algorithms that rely on linear approximation of g(u, v)

- Subgradient method
- Cutting plane methods
- Bundle methods

Gaps and Feasible Solutions

Optimality gaps can guide termination

Dual function optimization does not solve the original problem

Table of Contents

- Context
- Duality Gap
 - Zero Duality Gap
 - Bounding the Duality Gap
- Recovering Primal Solutions

Consider (without loss of generality) Lagrange relaxation without equality constraints:

$$\max f(x), x \in \mathcal{D}, h_j(x) = 0, j = 1, \dots, l$$
 (2)

with Lagrangian function

$$L(x, v) = f_0(x) - \sum_{j=1}^{I} v_j h_j(x) = f_0(x) - v^T h(x)$$
 (3)

and dual function

$$g(v) = \max_{x \in \mathcal{D}} L(x, v) \tag{4}$$

The dual problem is

$$\min g(v), v \in \mathbb{R}^{I}$$

The Filling Property: Preliminary Definitions

Define the following sets:

$$\mathcal{D}(v) = \{x \in \mathcal{D} : L(x, v) = g(v)\}$$

$$G(v) = \{-h(x) : x \in \mathcal{D}(v)\}$$

Interpretations:

- $\mathcal{D}(v)$: set of x that maximize the Lagrangian function at v
- G(v): the image of $\mathcal{D}(v)$ through $-h(\cdot)$

The Filling Property

We know that $G(v) \subseteq \partial g(v)$, but when are they equal?

The **filling property** for (2) - (4) is said to hold at $v \in \mathbb{R}^l$ if $\partial g(v)$ is the convex hull of the set G(v)

When Does the Filling Property Hold?

The filling property holds at any $v \in \mathbb{R}^{l}$

- when \mathcal{D} is a compact set on which f_0 and each h_j are continuous
- in particular, when D is a finite set (combinatorial optimization)
- in linear programming and in quadratic programming
- in problems where f_0 and h_j are l_p -norms, $1 \le p \le +\infty$

Perturbation Function

Define perturbation function as

$$V(b) = \max f(x)$$

 $x \in \mathcal{D}$
 $h(x) = b$

Concave Upper Semicontinous Hull

The concave upper semi-continuous hull of a function V is the smallest function V^{**} which is concave, upper semicontinuous and larger than $V: V^{**}(b) \ge V(b)$

Graphical Illustration of USC Hull

Characterization of Dual Optimal Value

The dual optimal value is the value at 0 of the concave usc hull of the perturbation function: $\min g = V^{\star\star}(0)$

Convexifying \mathcal{D} in Problems with Linear Data

Gap result 1: For an instance of (2) with linear data:

$$\max c^T x$$
, $x \in \mathcal{D} \subset \mathbb{R}^n$, $Ax = b$

denote by $\bar{\mathcal{D}}$ the closed convex hull of \mathcal{D} . The dual minimal value min g is not smaller than the maximal value in the above equation, with \mathcal{D} replaced by $\bar{\mathcal{D}}$.

Conclusion: the dual minimum is at least as large as the convex relaxation of the primal problem

Convexifying \mathcal{D} in Problems with Linear Data: A Stronger Result

Gap result 2: Equality holds in *gap result 1* in any of the following cases:

- \bullet $\bar{\mathcal{D}}$ is a bounded set in \mathbb{R}^n
- ② for any $v \in \mathbb{R}^I$ close enough to 0, there exists $x \in \overline{\mathcal{D}}$ such that Ax = b + v
- there exists u* minimizing the dual function and the filling property holds at u*

Conclusion: when *gap result 2* applies, Lagrange relaxation solves the "convex relaxation" of the primal problem

Zero Duality Gap

Gap result 3: Let (2) be a convex optimization problem: \mathcal{D} is a closed convex set in \mathbb{R}^n , $f_0: \mathcal{D} \to \mathbb{R}$ is a concave function, the constraint functions h_j are affine. Assume that the dual function (4) is not identically $+\infty$. Then there is no duality gap if one at least of the following properties holds:

- ① \mathcal{D} is a bounded set in \mathbb{R}^n , f_0 [resp. each inequality constraint] is upper [resp. lower] semicontinuous on \mathcal{D}
- of for any $v \in R^I$ close enough to 0, there is $x \in \mathcal{D}$ such that h(x) = v

Duality Gap Relations

Counter-Example: A Convex Optimization Problem with a Non-Zero Duality Gap

Consider the following problem:

$$p^* = \min e^{-x}$$

s.t. $f(x, y) = x^2/y \le 0$
 $\mathcal{D} = \{(x, y)|y > 0\}$

- Show that x^2/y is a convex function for y > 0
- Conclude that this is a convex optimization problem
- Show that $p^* = 1$

Relaxing f(x, y), we have the following dual function:

$$g(u) = \min_{y>0}(e^{-x} + u\frac{x^2}{y})$$

with $\mathsf{dom}(g) = \mathbb{R}_+$

- Obviously, $g(u) \ge 0$ for all $u \ge 0$
- For any $\epsilon > 0$, $g(u) < \epsilon$ for all $u \ge 0$
- Therefore, g(u) = 0 for all $u \ge 0$
- Conclusion: $d^* = \max g = 0 > p^* = 1$
- Are the conditions of gap result 1 satisfied? (Hint: no)
- Are the conditions of gap result 2 satisfied? (Hint: no)
- Are the conditions of gap result 3 satisfied? (Hint: no)

Shapley Folkman Lemma

Shapley-Folkman lemma: Let Y_i , i = 1, ..., I be a collection of subsets of \mathbb{R}^{m+1} . Then for every $y \in conv(\sum_{i=1}^{I} Y_i)$ there exists a subset $I(y) \subset \{1, ..., I\}$ containing at most m+1 indices such that

$$y \in \sum_{i \notin I(y)} Y_i + \sum_{i \in I(y)} conv(Y_i)$$

Graphical Illustration of Shapley-Folkman Lemma

- Consider four sets Y_i (left figure)
- The pink surface (right figure) indicates $conv(\sum_{i=1}^{I} Y_i)$
- Since m + 1 = 2, the point in the right is the sum of two points in Y_i and two points in conv(Y_i)

Relevance to Lagrange Relaxation

Consider an almost separable optimization problem with f_i , h_i linear¹:

$$\max_{x_i \in \mathcal{D}_i} \sum_{i=1}^n f_i(x_i)$$
s.t.
$$\sum_{i=1}^n h_i(x_i) = 0$$

Dual function:

$$g(\lambda) = \sum_{i=1}^{n} \max_{x_i \in \mathcal{D}_i} (f_i(x_i) + \lambda^T h_i(x_i))$$

¹The linearity can be generalized, we use it to invoke gap result 2

Denote

$$\rho_i = \max_{\mathbf{x} \in \bar{\mathcal{D}}_i} f_i(\mathbf{x}) - \max_{\mathbf{x} \in \mathcal{D}_i} f_i(\mathbf{x})$$

According to gap result 2,

$$d^* = \min g$$

= $\max_{x_i \in \bar{\mathcal{D}}_i} \{ \sum_{i=1}^n f_i(x_i) : \sum_{i=1}^n h_i(x_i) = 0 \}$

Apply the Shapley-Folkman theorem to the set

$$Y_i = \{(f_i(x), h_i(x))\}$$
 with $Y = \sum_{i=1}^n Y_i$ to get the following

bound:

$$p^{\star}-d^{\star}\leq \frac{m+1}{n}E$$

where

$$E = \max_{i=i,\dots,n} \rho_i$$

Graphical Illustration

Table of Contents

- Context
- 2 Duality Gap
 - Zero Duality Gap
 - Bounding the Duality Gap
- Recovering Primal Solutions

Recovering Primal Optimal Solution

Optimality result 1: Let a dual algorithm produce u^* solving the dual problem. Suppose that

- the filling property holds
- appropriate convexity holds for X, c and L

Then (23) solves the primal problem

Primal Optimality in the Subgradient Algorithm

Optimality result 2: Let the subgradient method be applied with the following stepsizes:

$$a_k = \frac{\lambda_k}{\|\pi_k\|}$$
, with $\lambda_k \downarrow 0$ and $\sum_{k=1}^{\infty} \lambda_k = +\infty$

Then g_k^{best} converges to $\inf g$ If the problem satisfies the assumptions of *optimality result 1*, then

$$\hat{x}_{k} = \frac{\sum_{j=1}^{k} a_{j} x_{j}}{\sum_{j=1}^{k} a_{j}}$$

converges to a primal optimal solution

References

- [1] S. Boyd, "Subgradient methods", EE364b lecture slides, http://stanford.edu/class/ee364b/lectures/
- [2] C. Lemaréchal, "Lagrangian Relaxation", Computational combinatorial optimization. Springer Berlin Heidelberg, pp. 112-156, 2001.
- [3] D. P. Bertsekas, N. R. Sandell, "Estimates of the Duality Gap for Large-Scale Separable Nonconvex Optimization Problems", IEEE Conference on Decision and Control, 1982.