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When to Use Lagrange Relaxation

Consider the following optimization problem:

*

p* = maxfy(x)
f(x)<0
h(x) =0

withx e Dc R, f:R" - R™ h:R" - R/

Context for Lagrange relaxation:

@ Complicating constraints f(x) < 0 and h(x) = 0 make the
problem difficult

© Dual function is relatively easy to evaluate

g(u, v) = sup(fo(x) — u”f(x) — vTh(x)) (1)

xeD



|ldea of Dual Decomposition

@ Dual function g(u, v) is convex regardless of primal
problem

@ Computation of g(u, v), m € 9g(u, v) is relatively easy

@ But... g(u, v) may be non-differentiable

ldea: minimize g(u, v) using algorithms that rely on linear
approximation of g(u, v)

@ Subgradient method
@ Cutting plane methods
© Bundle methods



Gaps and Feasible Solutions

Optimality gaps can guide termination
Dual function optimization does not solve the original problem
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Consider (without loss of generality) Lagrange relaxation
without equality constraints:

max f(x), x € D, hj(x)=0,j=1,...,1 (2)

with Lagrangian function
L(x,v) = fy(x Zvjh(x ) = fo(x) — v h(x) (3)

and dual function

g(v) =maxL(x,v) (4)

The dual problem is

ming(v), veR
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The Filling Property: Preliminary Definitions

Define the following sets:

D(v) = {xeD:Lx,v)=g9(v)}
G(v) = {-h(x):xeD(v)}
Interpretations:

@ D(v): set of x that maximize the Lagrangian function at v
@ G(v): the image of D(v) through —h(-)
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The Filling Property

We know that G(v) C dg(v), but when are they equal?

The filling property for (2) - (4) is said to hold at v € R/ if
dg(v) is the convex hull of the set G(v)
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When Does the Filling Property Hold?

The filling property holds at any v € R/

@ when D is a compact set on which f, and each h; are
continuous

@ in particular, when D is a finite set (combinatorial
optimization)

@ in linear programming and in quadratic programming

@ in problems where fy and hj are lp-norms, 1 < p < 400
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Perturbation Function

Define perturbation function as

V(b) = max f(x)
xeD
h(x)=»b
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Concave Upper Semicontinous Hull

The concave upper semi-continuous hull of a function V is the
smallest function V** which is concave, upper semicontinuous
and larger than V: V**(b) > V(b)
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Graphical lllustration of USC Hull
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Characterization of Dual Optimal Value

The dual optimal value is the value at 0 of the concave usc hull
of the perturbation function: ming = V**(0)
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Convexifying D in Problems with Linear Data

Gap result 1: For an instance of (2) with linear data:

maxc’x, xe€DCR", Ax=b

denote by D the closed convex hull of D. The dual minimal
value min g is not smaller than the maximal value in the above
equation, with D replaced by D.

Conclusion: the dual minimum is at least as large as the convex
relaxation of the primal problem
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Convexifying D in Problems with Linear Data: A

Stronger Result

Gap result 2: Equality holds in gap result 1in any of the
following cases:

@ Dis abounded set in R”

@ forany v e R/ close enough to 0, there exists x € D such
that Ax =b+ v

© there exists u* minimizing the dual function and the filling
property holds at u*

Conclusion: when gap result 2 applies, Lagrange relaxation
solves the "convex relaxation" of the primal problem
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Zero Duality Gap

Gap result 3: Let (2) be a convex optimization problem: D is a
closed convex setin R, fy : D — R is a concave function, the
constraint functions h; are affine. Assume that the dual function
(4) is not identically +oc. Then there is no duality gap if one at
least of the following properties holds:

@ Dis abounded set in R”, f, [resp. each inequality
constraint] is upper [resp. lower] semicontinuous on D

@ for any v € R’ close enough to 0, there is x € D such that
h(x)=v

© there exists u* minimizing the dual function, and the filling
property holds at u*

© D s a polyhedral set, fy and all constraints are affine
functions (linear programming)
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Duality Gap Relations

————————— — d* =ming = VV**(0)

Zero when
gap result 2
holds
_________ | ﬁ* = I'[la,}[{fn(l') T e ‘B« h(i:) = ()}
Zero when
gap result 3
hold -
ods y | p* = max{fo(z) : x € D,h(z) = 0}
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Counter-Example: A Convex Optimization Problem with

a Non-Zero Duality Gap

Consider the following problem:

p* = mine ¥
st f(x,y) =x?/y <0

D= {(x,y)ly >0}

@ Show that x2/y is a convex function for y > 0
@ Conclude that this is a convex optimization problem
@ Show that p* =1
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Relaxing f(x, y), we have the following dual function:
2

— minfe—X 1 X
o(u) = min(e™ + v )

with dom(g) = Ry

@ Obviously, g(u) >0forallu>0

@ Foranye> 0, g(u) <eforallu>0

@ Therefore, g(u) =0forallu>0

@ Conclusion: d* =maxg=0 > p* =1

@ Are the conditions of gap result 1 satisfied? (Hint: no)
@ Are the conditions of gap result 2 satisfied? (Hint: no)

@ Are the conditions of gap result 3 satisfied? (Hint: no)
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Shapley Folkman Lemma

Shapley-Folkman lemma: Let Y;, i = 1,...,/ be a collection of
subsets of R™t1. Then for every y ¢ conv(Z,(:1 Y;) there exists
a subset I(y) C {1,..., 1} containing at most m + 1 indices

such that
ye D Vit ) conv(Yy)
i¢i(y) iel(y)
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Graphical lllustration of Shapley-Folkman Lemma
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@ Consider four sets Y; (left figure)
@ The pink surface (right figure) indicates conv(Z,’-:1 Y)

@ Since m+ 1 = 2, the point in the right is the sum of two
points in Y; and two points in conv(Y;)
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Relevance to Lagrange Relaxation

Consider an almost separable optimization problem with f;, h;
linear':

n
max ; fi(xi)
n
s.t. Z h,'(X,') =0
i=1

Dual function:

9(A) = Z[(T_‘ag(ﬂ(xi) + AThi(x;))
i—1 X<

"The linearity can be generalized, we use it to invoke gap result 2
24/31



Denote

pi = max fi(x) — max fi(x)
X€D;j x€D;j

According to gap result 2,
d* = ming

= max{fo, .Z (x;) = 0}

X€D; i i—1
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Apply the Shapley-Folkman theorem to the set
Yi = {(fi(x), hi(x))} with Y = >"7_, Y; to get the following

bound:
m-+1

pr—d* < E

where
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fi(@)

}Ll (l)

fi(@) + fa(x) /.—'O """"""""

.

ha(x)

Any point in conv(Y) is
obtained from the sum of up
to m+1 points that are not in
Y_i, these points can be up to
rho_i greater than f_i(x_i) in
their second coordinate

hy(2) + ha(z)
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Recovering Primal Optimal Solution

Optimality result 1: Let a dual algorithm produce u* solving
the dual problem. Suppose that

@ the filling property holds
@ appropriate convexity holds for X, c and L
Then (23) solves the primal problem
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Primal Optimality in the Subgradient Algorithm

Optimality result 2: Let the subgradient method be applied
with the following stepsizes:

A . =
ax = ﬁ, with A\ | 0 and Z)\k = 400
K
k=1
Then gP®st converges to infg
If the problem satisfies the assumptions of optimality result 1,

then .
o 213X

X = —L——
D=1

converges to a primal optimal solution
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