
Lagrange Relaxation:
Duality Gaps and Primal Solutions

Operations Research

Anthony Papavasiliou

1 / 31



Contents

1 Context

2 Duality Gap
Zero Duality Gap
Bounding the Duality Gap

3 Recovering Primal Solutions

2 / 31



Table of Contents

1 Context

2 Duality Gap
Zero Duality Gap
Bounding the Duality Gap

3 Recovering Primal Solutions

3 / 31



When to Use Lagrange Relaxation

Consider the following optimization problem:

p? = max f0(x)

f (x) ≤ 0

h(x) = 0

with x ∈ D ⊂ Rn, f : Rn → Rm, h : Rn → Rl

Context for Lagrange relaxation:
1 Complicating constraints f (x) ≤ 0 and h(x) = 0 make the

problem difficult
2 Dual function is relatively easy to evaluate

g(u, v) = sup
x∈D

(f0(x)− uT f (x)− vT h(x)) (1)
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Idea of Dual Decomposition

Dual function g(u, v) is convex regardless of primal
problem

Computation of g(u, v), π ∈ ∂g(u, v) is relatively easy

But... g(u, v) may be non-differentiable

Idea: minimize g(u, v) using algorithms that rely on linear
approximation of g(u, v)

1 Subgradient method

2 Cutting plane methods

3 Bundle methods
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Gaps and Feasible Solutions

Optimality gaps can guide termination
Dual function optimization does not solve the original problem
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Consider (without loss of generality) Lagrange relaxation
without equality constraints:

max f (x), x ∈ D, hj(x) = 0, j = 1, . . . , l (2)

with Lagrangian function

L(x , v) = f0(x)−
l∑

j=1

vjhj(x) = f0(x)− vT h(x) (3)

and dual function
g(v) = max

x∈D
L(x , v) (4)

The dual problem is

min g(v), v ∈ Rl
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The Filling Property: Preliminary Definitions

Define the following sets:

D(v) = {x ∈ D : L(x , v) = g(v)}

G(v) = {−h(x) : x ∈ D(v)}

Interpretations:

D(v): set of x that maximize the Lagrangian function at v

G(v): the image of D(v) through −h(·)
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The Filling Property

We know that G(v) ⊆ ∂g(v), but when are they equal?

The filling property for (2) - (4) is said to hold at v ∈ Rl if
∂g(v) is the convex hull of the set G(v)
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When Does the Filling Property Hold?

The filling property holds at any v ∈ Rl

when D is a compact set on which f0 and each hj are
continuous

in particular, when D is a finite set (combinatorial
optimization)

in linear programming and in quadratic programming

in problems where f0 and hj are lp-norms, 1 ≤ p ≤ +∞
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Perturbation Function

Define perturbation function as

V (b) = max f (x)

x ∈ D

h(x) = b
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Concave Upper Semicontinous Hull

The concave upper semi-continuous hull of a function V is the
smallest function V ?? which is concave, upper semicontinuous
and larger than V : V ??(b) ≥ V (b)
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Graphical Illustration of USC Hull
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Characterization of Dual Optimal Value

The dual optimal value is the value at 0 of the concave usc hull
of the perturbation function: min g = V ??(0)
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Convexifying D in Problems with Linear Data

Gap result 1: For an instance of (2) with linear data:

max cT x , x ∈ D ⊂ Rn, Ax = b

denote by D̄ the closed convex hull of D. The dual minimal
value min g is not smaller than the maximal value in the above
equation, with D replaced by D̄.

Conclusion: the dual minimum is at least as large as the convex
relaxation of the primal problem
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Convexifying D in Problems with Linear Data: A
Stronger Result

Gap result 2: Equality holds in gap result 1 in any of the
following cases:

1 D̄ is a bounded set in Rn

2 for any v ∈ Rl close enough to 0, there exists x ∈ D̄ such
that Ax = b + v

3 there exists u? minimizing the dual function and the filling
property holds at u?

Conclusion: when gap result 2 applies, Lagrange relaxation
solves the "convex relaxation" of the primal problem
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Zero Duality Gap

Gap result 3: Let (2) be a convex optimization problem: D is a
closed convex set in Rn, f0 : D → R is a concave function, the
constraint functions hj are affine. Assume that the dual function
(4) is not identically +∞. Then there is no duality gap if one at
least of the following properties holds:

1 D is a bounded set in Rn, f0 [resp. each inequality
constraint] is upper [resp. lower] semicontinuous on D

2 for any v ∈ R l close enough to 0, there is x ∈ D such that
h(x) = v

3 there exists u? minimizing the dual function, and the filling
property holds at u?

4 D is a polyhedral set, f0 and all constraints are affine
functions (linear programming)
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Duality Gap Relations
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Counter-Example: A Convex Optimization Problem with
a Non-Zero Duality Gap

Consider the following problem:

p? = min e−x

s.t. f (x , y) = x2/y ≤ 0

D = {(x , y)|y > 0}

Show that x2/y is a convex function for y > 0

Conclude that this is a convex optimization problem

Show that p? = 1
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Relaxing f (x , y), we have the following dual function:

g(u) = min
y>0

(e−x + u
x2

y
)

with dom(g) = R+

Obviously, g(u) ≥ 0 for all u ≥ 0

For any ε > 0, g(u) < ε for all u ≥ 0

Therefore, g(u) = 0 for all u ≥ 0

Conclusion: d? = max g = 0 > p? = 1

Are the conditions of gap result 1 satisfied? (Hint: no)

Are the conditions of gap result 2 satisfied? (Hint: no)

Are the conditions of gap result 3 satisfied? (Hint: no)

21 / 31



Shapley Folkman Lemma

Shapley-Folkman lemma: Let Yi , i = 1, . . . , I be a collection of
subsets of Rm+1. Then for every y ∈ conv(

∑I
i=1 Yi) there exists

a subset I(y) ⊂ {1, . . . , I} containing at most m + 1 indices
such that

y ∈
∑

i /∈I(y)

Yi +
∑

i∈I(y)

conv(Yi)
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Graphical Illustration of Shapley-Folkman Lemma

Consider four sets Yi (left figure)

The pink surface (right figure) indicates conv(
∑I

i=1 Yi)

Since m + 1 = 2, the point in the right is the sum of two
points in Yi and two points in conv(Yi)
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Relevance to Lagrange Relaxation

Consider an almost separable optimization problem with fi , hi

linear1:

max
xi∈Di

n∑
i=1

fi(xi)

s.t.
n∑

i=1

hi(xi) = 0

Dual function:

g(λ) =
n∑

i=1

max
xi∈Di

(fi(xi) + λT hi(xi))

1The linearity can be generalized, we use it to invoke gap result 2
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Denote
ρi = max

x∈D̄i

fi(x)−max
x∈Di

fi(x)

According to gap result 2,

d? = min g

= max
xi∈D̄i

{
n∑

i=1

fi(xi) :
n∑

i=1

hi(xi) = 0}
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Apply the Shapley-Folkman theorem to the set
Yi = {(fi(x),hi(x))} with Y =

∑n
i=1 Yi to get the following

bound:
p? − d? ≤ m + 1

n
E

where
E = max

i=i,...,n
ρi
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Graphical Illustration
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Recovering Primal Optimal Solution

Optimality result 1: Let a dual algorithm produce u? solving
the dual problem. Suppose that

the filling property holds

appropriate convexity holds for X, c and L

Then (23) solves the primal problem
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Primal Optimality in the Subgradient Algorithm

Optimality result 2: Let the subgradient method be applied
with the following stepsizes:

ak =
λk

‖πk‖
, with λk ↓ 0 and

∞∑
k=1

λk = +∞

Then gbest
k converges to inf g

If the problem satisfies the assumptions of optimality result 1,
then

x̂k =

∑k
j=1 ajxj∑k
j=1 aj

converges to a primal optimal solution
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