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When to Use Lagrange Relaxation

Consider the following optimization problem:

p? = max f0(x)

f (x) ≤ 0

h(x) = 0

with x ∈ D ⊂ Rn, f : Rn → Rm, h : Rn → Rl

Context for Lagrange relaxation:
1 Complicating constraints f (x) ≤ 0 and h(x) = 0 make the

problem difficult
2 Dual function is relatively easy to evaluate

g(u, v) = sup
x∈D

(f0(x)− uT f (x)− vT h(x)) (1)
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Idea of Dual Decomposition

Dual function g(u, v) is convex regardless of primal
problem

Computation of g(u, v), π ∈ ∂g(u, v) is relatively easy

But... g(u, v) may be non-differentiable

Idea: minimize g(u, v) using algorithms that rely on linear
approximation of g(u, v)

1 Subgradient method

2 Cutting plane methods

3 Bundle methods
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Why Minimize the Dual Function: Bounding p?

Proposition: If u ≥ 0 then g(u, v) ≥ p?

Proof: If x̃ is feasible and u ≥ 0 then

f0(x̃) ≤ L(x̃ ,u, v) ≤ sup
x∈D

L(x ,u, v) = g(u, v).

Minimizing over all feasible x̃ gives p? ≤ g(u, v)

Conclusion: minimizing g(u, v) gives tightest possible bound to
p?
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Dual Function Properties

Proposition: g(u, v) is convex lower-semicontinous1. If (u, v)

is such that (1) has optimal solution xu,v , then

[
−f (xu,v )

−h(xu,v )

]
is a

subgradient of g

1A function is lower-semicontinuous when its epigraph is a closed subset
of Rm × Rl × R.
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Graphical Interpretation

Think of each x ∈ D as an index k ∈ K, then

g(u, v) = max
k∈K

(f0k − uT fk − vT hk )
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Lagrange Relaxation of Stochastic Programs

Consider 2-stage stochastic program:

min f1(x) + Eω[f2(y(ω), ω)]

s.t. h1i(x) ≤ 0, i = 1, . . . ,m1,

h2i(x , y(ω), ω) ≤ 0, i = 1, . . . ,m2

Introduce non-anticipativity constraint x(ω) = x and
reformulate problem as

min Eω[f1(x) + f2(y(ω), ω)]

s.t. h1i(x) ≤ 0, i = 1, . . . ,m1,

h2i(x(ω), y(ω), ω) ≤ 0, i = 1, . . . ,m2

(ν(ω)) : x(ω) = x , ω ∈ Ω
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Dual Function of Stochastic Program

Denote ν = (ν(ω), ω ∈ Ω), then

g(ν) = g1(ν) + Eωg2(ν(ω), ω)

where

g1(ν) = infx f1(x) + (
∑
ω∈Ω

ν(ω))T x

s.t. h1i(x) ≤ 0, i = 1, . . . ,m1,

and

g2(ν(ω), ω) = infx(ω),y(ω) f2(y(ω), ω)− ν(ω)T x(ω)

s.t. h2i(x(ω), y(ω), ω) ≤ 0, i = 1, . . . ,m2
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Duality and Problem Reformulations

Equivalent formulations of a problem can lead to very
different duals

Reformulating the primal problem can be useful when the
dual is difficult to derive, or uninteresting

Common reformulations

Introduce new variables and equality constraints (we have
seen this already)

Rearrange constraints in subproblems
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Rearranging Constraints

Note alternative relaxation to the previous stochastic program:

minEω[f1(x(ω)) + f2(y(ω), ω)]

s.t. h1i(x(ω)) ≤ 0, i = 1, . . . ,m1,

h2i(x(ω), y(ω), ω) ≤ 0, i = 1, . . . ,m2

x(ω) = x

This relaxation is probably useless (because subproblem
involving x has no constraints)
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A Two-Stage Stochastic Integer Program [Sen, 2000]

Scenario Constraints Binary Solutions
ω = 1 2x1 + y1 ≤ 2 and D1 = {(0,0), (1,0)}

2x1 − y1 ≥ 0
ω = 2 x2 − y2 ≥ 0 D2 = {(0,0), (1,0), (1,1)}
ω = 3 x3 + y3 ≤ 1 D3 = {(0,0), (0,1), (1,0)}

3 equally likely scenarios

Define x as first-stage decision, xω is first-stage decision
for scenario ω

Non-anticipativity constraint: x1 = 1
3(x1 + x2 + x3)
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Formulation of Problem and Dual Function

max(1/3)y1 + (1/3)y2 + (1/3)y3

s.t. 2x1 + y2 ≤ 2

2x1 − y1 ≥ 0

x2 − y2 ≥ 0

x3 + y3 ≤ 1
2
3

x1 −
1
3

x2 −
1
3

x3 = 0, (λ)

xω, yω ∈ {0,1}, ω ∈ Ω = {1,2,3}

g(λ) = max
(xω ,yω)∈Dω

{2λ
3

x1 +
1
3

y1 −
λ

3
x2 +

1
3

y2 −
λ

3
x3 +

1
3

y3}

= max(0,2λ/3) + max(0, (−λ+ 1)/3) + max(1/3,−λ/3)
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Duality Gap

Dual function can be expressed equivalently

g(λ) =


1
3 −

2
3λ λ ≤ −1

2
3 −

1
3λ −1 ≤ λ ≤ 0

2
3 + 1

3λ 0 ≤ λ ≤ 1
1
3 + 2

3λ 1 ≤ λ

Primal optimal value p? = 1/3 with x?
1 = x?

2 = x?
3 = 1,

y?
1 = 0, y?

2 = 1, y?
3 = 0

Dual optimal value d? = 2/3 at λ? = 0

Conclusion: We have a duality gap of 1/3
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Alternative Relaxation

Add new explicit first-stage decision variable x , with the
following non-anticipativity constraints:

x1 = x , (λ1)

x2 = x , (λ2)

x3 = x , (λ3)

Dual function:

g(λ) = max
(x1,y1)∈D1

{1
3

y1 − λ1x1}+ max
(x2,y2)∈D2

{1
3

y2 − λ2x2}+

max
(x3,y3)∈D3

{1
3

y3 − λ3x3}+ max
x∈{0,1}

{(λ1 + λ2 + λ3)x}

= max(0,−λ1) + max(0,
1
3
− λ2) + max(

1
3
,−λ3) +

max(0, λ1 + λ2 + λ3)
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Closing the Duality Gap

Choosing λ1 = 0, λ2 = 1
3 and λ3 = −1

3 , we have the following
dual function value:

g(0,1/3,−1/3) = 0 + 0 +
1
3

+ 0 =
1
3
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Conclusions of Example

Different relaxations can result in different duality gaps

Computational trade-off: introducing more Lagrange
multipliers results in better bounds but larger search space
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Unit Commitment

Consider the following notation

Schedule I power plants over horizon T

Denote x t
i as control of unit i in period t , denote xi [resp.

x t ] as vector (x t
i )T

t=1 [resp. (x t
i )i∈I ]

Denote Di as feasible set of unit i

Denote Ci(xi) as cost of producing xi by unit i

Denote ct (x t ) ≤ 0 as a complicating constraint that needs
to be satisfied collectively by units, and suppose that it is
additive: ct (x t ) =

∑
i∈I ct

i (x t
i )
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Unit commitment problem:

min
∑
i∈I

Ci(xi)

xi ∈ Di , i ∈ I

(ut ) :
∑
i∈I

ct
i (x t

i ) ≤ 0, t = 1, . . . ,T

Relax complicating constraints to obtain the following
Lagrangian:

L(x ,u) =
∑
i∈I

(Ci(xi) +
T∑

t=1

utct
i (x t

i ))

What have we gained? We can solve one problem per plant:

min
xi∈Di

(Ci(xi) +
T∑

t=1

utct
i (x t

i ))
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