Lagrange Relaxation:
 Introduction and Applications
 Operations Research

Anthony Papavasiliou

Contents

(9) Context
(2) Applications

- Application in Stochastic Programming
- Unit Commitment

Table of Contents

(9) Context
(2) Applications

- Application in Stochastic Programming
- Unit Commitment

When to Use Lagrange Relaxation

Consider the following optimization problem:

$$
\begin{aligned}
p^{\star}= & \max f_{0}(x) \\
& f(x) \leq 0 \\
& h(x)=0
\end{aligned}
$$

with $x \in \mathcal{D} \subset \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime}$

Context for Lagrange relaxation:
(1) Complicating constraints $f(x) \leq 0$ and $h(x)=0$ make the problem difficult
(2) Dual function is relatively easy to evaluate

$$
\begin{equation*}
g(u, v)=\sup _{x \in \mathcal{D}}\left(f_{0}(x)-u^{T} f(x)-v^{T} h(x)\right) \tag{1}
\end{equation*}
$$

Idea of Dual Decomposition

- Dual function $g(u, v)$ is convex regardless of primal problem
- Computation of $g(u, v), \pi \in \partial g(u, v)$ is relatively easy
- But... $g(u, v)$ may be non-differentiable

Idea: minimize $g(u, v)$ using algorithms that rely on linear approximation of $g(u, v)$
(1) Subgradient method
(2) Cutting plane methods
(3) Bundle methods

Why Minimize the Dual Function: Bounding p^{\star}

Proposition: If $u \geq 0$ then $g(u, v) \geq p^{\star}$
Proof: If \tilde{x} is feasible and $u \geq 0$ then

$$
f_{0}(\tilde{x}) \leq L(\tilde{x}, u, v) \leq \sup _{x \in \mathcal{D}} L(x, u, v)=g(u, v) .
$$

Minimizing over all feasible \tilde{x} gives $p^{\star} \leq g(u, v)$
Conclusion: minimizing $g(u, v)$ gives tightest possible bound to p^{\star}

Dual Function Properties

Proposition: $g(u, v)$ is convex lower-semicontinous ${ }^{1}$. If (u, v) is such that (1) has optimal solution $x_{u, v}$, then $\left[\begin{array}{c}-f\left(x_{u, v}\right) \\ -h\left(x_{u, v}\right)\end{array}\right]$ is a subgradient of g
\triangle

[^0]
Graphical Interpretation

Think of each $x \in \mathcal{D}$ as an index $k \in \mathcal{K}$, then

$$
g(u, v)=\max _{k \in \mathcal{K}}\left(f_{0 k}-u^{\top} f_{k}-v^{\top} h_{k}\right)
$$

$$
(u, v)
$$

Table of Contents

(2) Applications

- Application in Stochastic Programming
- Unit Commitment

Lagrange Relaxation of Stochastic Programs

Consider 2-stage stochastic program:

$$
\begin{aligned}
& \min f 1(x)+\mathbb{E}_{\omega}[f 2(y(\omega), \omega)] \\
& \text { s.t. } h 1_{i}(x) \leq 0, i=1, \ldots, m_{1}, \\
& h 2_{i}(x, y(\omega), \omega) \leq 0, i=1, \ldots, m_{2}
\end{aligned}
$$

Introduce non-anticipativity constraint $x(\omega)=x$ and reformulate problem as

$$
\begin{array}{cl}
\min & \mathbb{E}_{\omega}[f 1(x)+f 2(y(\omega), \omega)] \\
\text { s.t. } & h 1_{i}(x) \leq 0, i=1, \ldots, m_{1} \\
& h 2_{i}(x(\omega), y(\omega), \omega) \leq 0, i=1, \ldots, m_{2} \\
(\nu(\omega)): & x(\omega)=x, \omega \in \Omega
\end{array}
$$

Dual Function of Stochastic Program

Denote $\nu=(\nu(\omega), \omega \in \Omega)$, then

$$
g(\nu)=g 1(\nu)+\mathbb{E}_{\omega} g 2(\nu(\omega), \omega)
$$

where

$$
\begin{aligned}
g 1(\nu)= & \inf _{x} \\
& f 1(x)+\left(\sum_{\omega \in \Omega} \nu(\omega)\right)^{T} x \\
& \text { s.t. }
\end{aligned} \quad h 1_{i}(x) \leq 0, i=1, \ldots, m_{1}, ~ l
$$

and

$$
\begin{array}{cl}
g 2(\nu(\omega), \omega)=\inf _{x(\omega), y(\omega)} & f 2(y(\omega), \omega)-\nu(\omega)^{T} x(\omega) \\
\text { s.t. } & h 2_{i}(x(\omega), y(\omega), \omega) \leq 0, i=1, \ldots, m_{2}
\end{array}
$$

Duality and Problem Reformulations

- Equivalent formulations of a problem can lead to very different duals
- Reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

Common reformulations

- Introduce new variables and equality constraints (we have seen this already)
- Rearrange constraints in subproblems

Rearranging Constraints

Note alternative relaxation to the previous stochastic program:

$$
\begin{aligned}
& \min \mathbb{E}_{\omega}[f 1(x(\omega))+f 2(y(\omega), \omega)] \\
& \text { s.t. } h 1_{i}(x(\omega)) \leq 0, i=1, \ldots, m_{1}, \\
& h 2_{i}(x(\omega), y(\omega), \omega) \leq 0, i=1, \ldots, m_{2} \\
& x(\omega)=x
\end{aligned}
$$

This relaxation is probably useless (because subproblem involving x has no constraints)

A Two-Stage Stochastic Integer Program [Sen, 2000]

Scenario	Constraints	Binary Solutions
$\omega=1$	$2 x_{1}+y_{1} \leq 2$ and	$\mathcal{D}_{1}=\{(0,0),(1,0)\}$
	$2 x_{1}-y_{1} \geq 0$	
$\omega=2$	$x_{2}-y_{2} \geq 0$	$\mathcal{D}_{2}=\{(0,0),(1,0),(1,1)\}$
$\omega=3$	$x_{3}+y_{3} \leq 1$	$\mathcal{D}_{3}=\{(0,0),(0,1),(1,0)\}$

- 3 equally likely scenarios
- Define x as first-stage decision, x_{ω} is first-stage decision for scenario ω
- Non-anticipativity constraint: $x_{1}=\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right)$

Formulation of Problem and Dual Function

$$
\begin{gathered}
\max (1 / 3) y_{1}+(1 / 3) y_{2}+(1 / 3) y_{3} \\
\text { s.t. } 2 x_{1}+y_{2} \leq 2 \\
2 x_{1}-y_{1} \geq 0 \\
x_{2}-y_{2} \geq 0 \\
x_{3}+y_{3} \leq 1 \\
\frac{2}{3} x_{1}-\frac{1}{3} x_{2}-\frac{1}{3} x_{3}=0,(\lambda) \\
x_{\omega}, y_{\omega} \in\{0,1\}, \omega \in \Omega=\{1,2,3\} \\
g(\lambda)=\max _{\left(x_{\omega}, y_{\omega}\right) \in \mathcal{D}_{\omega}}\left\{\frac{2 \lambda}{3} x_{1}+\frac{1}{3} y_{1}-\frac{\lambda}{3} x_{2}+\frac{1}{3} y_{2}-\frac{\lambda}{3} x_{3}+\frac{1}{3} y_{3}\right\} \\
=\max (0,2 \lambda / 3)+\max (0,(-\lambda+1) / 3)+\max (1 / 3,-\lambda / 3)
\end{gathered}
$$

Duality Gap

Dual function can be expressed equivalently

$$
g(\lambda)=\left\{\begin{array}{cc}
\frac{1}{3}-\frac{2}{3} \lambda & \lambda \leq-1 \\
\frac{2}{3}-\frac{1}{3} \lambda & -1 \leq \lambda \leq 0 \\
\frac{2}{3}+\frac{1}{3} \lambda & 0 \leq \lambda \leq 1 \\
\frac{1}{3}+\frac{2}{3} \lambda & 1 \leq \lambda
\end{array}\right.
$$

- Primal optimal value $p^{\star}=1 / 3$ with $x_{1}^{\star}=x_{2}^{\star}=x_{3}^{\star}=1$,

$$
y_{1}^{\star}=0, y_{2}^{\star}=1, y_{3}^{\star}=0
$$

- Dual optimal value $d^{\star}=2 / 3$ at $\lambda^{\star}=0$

Conclusion: We have a duality gap of $1 / 3$

Alternative Relaxation

Add new explicit first-stage decision variable x, with the following non-anticipativity constraints:

$$
\begin{aligned}
& x_{1}=x,\left(\lambda_{1}\right) \\
& x_{2}=x,\left(\lambda_{2}\right) \\
& x_{3}=x,\left(\lambda_{3}\right)
\end{aligned}
$$

Dual function:

$$
\begin{aligned}
g(\lambda)= & \max _{\left(x_{1}, y_{1}\right) \in \mathcal{D}_{1}}\left\{\frac{1}{3} y_{1}-\lambda_{1} x_{1}\right\}+\max _{\left(x_{2}, y_{2}\right) \in \mathcal{D}_{2}}\left\{\frac{1}{3} y_{2}-\lambda_{2} x_{2}\right\}+ \\
& \max _{\left(x_{3}, y_{3}\right) \in \mathcal{D}_{3}}\left\{\frac{1}{3} y_{3}-\lambda_{3} x_{3}\right\}+\max _{x \in\{0,1\}}\left\{\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) x\right\} \\
= & \max \left(0,-\lambda_{1}\right)+\max \left(0, \frac{1}{3}-\lambda_{2}\right)+\max \left(\frac{1}{3},-\lambda_{3}\right)+ \\
& \max \left(0, \lambda_{1}+\lambda_{2}+\lambda_{3}\right)
\end{aligned}
$$

Closing the Duality Gap

Choosing $\lambda_{1}=0, \lambda_{2}=\frac{1}{3}$ and $\lambda_{3}=-\frac{1}{3}$, we have the following dual function value:

$$
g(0,1 / 3,-1 / 3)=0+0+\frac{1}{3}+0=\frac{1}{3}
$$

Conclusions of Example

- Different relaxations can result in different duality gaps
- Computational trade-off: introducing more Lagrange multipliers results in better bounds but larger search space

Unit Commitment

Consider the following notation

- Schedule I power plants over horizon T
- Denote x_{i}^{t} as control of unit i in period t, denote x_{i} [resp. $\left.x^{t}\right]$ as vector $\left(x_{i}^{t}\right)_{t=1}^{T}\left[r e s p . ~\left(x_{i}^{t}\right)_{i \in 1}\right]$
- Denote \mathcal{D}_{i} as feasible set of unit i
- Denote $C_{i}\left(x_{i}\right)$ as cost of producing x_{i} by unit i
- Denote $c^{t}\left(x^{t}\right) \leq 0$ as a complicating constraint that needs to be satisfied collectively by units, and suppose that it is additive: $c^{t}\left(x^{t}\right)=\sum_{i \in I} c_{i}^{t}\left(x_{i}^{t}\right)$

Unit commitment problem:

$$
\begin{aligned}
& \min \sum_{i \in I} c_{i}\left(x_{i}\right) \\
\left(u^{t}\right): & \sum_{i \in I} c_{i}^{t}\left(x_{i}^{t}\right) \leq 0, t=1, \ldots, T
\end{aligned}
$$

Relax complicating constraints to obtain the following Lagrangian:

$$
L(x, u)=\sum_{i \in I}\left(C_{i}\left(x_{i}\right)+\sum_{t=1}^{T} u^{t} c_{i}^{t}\left(x_{i}^{t}\right)\right)
$$

What have we gained? We can solve one problem per plant:

$$
\min _{x_{i} \in \mathcal{D}_{i}}\left(C_{i}\left(x_{i}\right)+\sum_{t=1}^{T} u^{t} c_{i}^{t}\left(x_{i}^{t}\right)\right)
$$

References

[1] S. Boyd, "Subgradient methods", EE364b lecture slides, http://stanford.edu/class/ee364b/lectures/
[2] C. Lemaréchal, "Lagrangian Relaxation", Computational combinatorial optimization. Springer Berlin Heidelberg, pp. 112-156, 2001.

[^0]: ${ }^{1}$ A function is lower-semicontinuous when its epigraph is a closed subset of $\mathbb{R}^{m} \times \mathbb{R}^{\prime} \times \mathbb{R}$.

