Lagrange Relaxation: Introduction and Applications Operations Research

Anthony Papavasiliou





- Application in Stochastic Programming
- Unit Commitment



### 2 Applications

- Application in Stochastic Programming
- Unit Commitment

# When to Use Lagrange Relaxation

Consider the following optimization problem:

$$p^{\star} = \max f_0(x)$$
  
 $f(x) \leq 0$   
 $h(x) = 0$ 

with  $x \in \mathcal{D} \subset \mathbb{R}^n$ ,  $f : \mathbb{R}^n \to \mathbb{R}^m$ ,  $h : \mathbb{R}^n \to \mathbb{R}^l$ 

Context for Lagrange relaxation:

- Complicating constraints f(x) ≤ 0 and h(x) = 0 make the problem difficult
- Oual function is relatively easy to evaluate

$$g(u,v) = \sup_{x \in \mathcal{D}} (f_0(x) - u^T f(x) - v^T h(x))$$
(1)

(ロ) (四) (E) (E) (E) (E)

- Dual function g(u, v) is convex regardless of primal problem
- Computation of  $g(u, v), \pi \in \partial g(u, v)$  is relatively easy
- But... g(u, v) may be non-differentiable

Idea: minimize g(u, v) using algorithms that rely on linear approximation of g(u, v)

- Subgradient method
- Outting plane methods
- Bundle methods

**Proposition**: If  $u \ge 0$  then  $g(u, v) \ge p^*$ Proof: If  $\tilde{x}$  is feasible and  $u \ge 0$  then

$$f_0(\tilde{x}) \leq L(\tilde{x}, u, v) \leq \sup_{x \in \mathcal{D}} L(x, u, v) = g(u, v).$$

Minimizing over all feasible  $\tilde{x}$  gives  $p^* \leq g(u, v)$ 

Conclusion: minimizing g(u, v) gives tightest possible bound to  $p^*$ 

**Proposition**: g(u, v) is convex lower-semicontinous<sup>1</sup>. If (u, v) is such that (1) has optimal solution  $x_{u,v}$ , then  $\begin{bmatrix} -f(x_{u,v}) \\ -h(x_{u,v}) \end{bmatrix}$  is a subgradient of g



<sup>&</sup>lt;sup>1</sup>A function is lower-semicontinuous when its epigraph is a closed subset of  $\mathbb{R}^m \times \mathbb{R}^l \times \mathbb{R}$ .

### **Graphical Interpretation**

Think of each  $x \in \mathcal{D}$  as an index  $k \in \mathcal{K}$ , then

$$g(u, v) = \max_{k \in \mathcal{K}} (f_{0k} - u^T f_k - v^T h_k)$$







- Application in Stochastic Programming
- Unit Commitment

# Lagrange Relaxation of Stochastic Programs

Consider 2-stage stochastic program:

$$\begin{aligned} \min f(x) + \mathbb{E}_{\omega}[f(y(\omega), \omega)] \\ \text{s.t. } h(x) &\leq 0, i = 1, \dots, m_1, \\ h(x) &\leq 0, i = 1, \dots, m_2 \end{aligned}$$

Introduce **non-anticipativity constraint**  $x(\omega) = x$  and reformulate problem as

$$\begin{array}{ll} \min & \mathbb{E}_{\omega}[f1(x) + f2(y(\omega), \omega)] \\ \text{s.t.} & h1_i(x) \leq 0, i = 1, \dots, m_1, \\ & h2_i(x(\omega), y(\omega), \omega) \leq 0, i = 1, \dots, m_2 \\ (\nu(\omega)): & x(\omega) = x, \omega \in \Omega \end{array}$$

#### **Dual Function of Stochastic Program**

Denote  $\nu = (\nu(\omega), \omega \in \Omega)$ , then

$$g(
u) = g \mathbf{1}(
u) + \mathbb{E}_{\omega} g \mathbf{2}(
u(\omega), \omega)$$

where

$$g1(\nu) = \inf_{x} f1(x) + (\sum_{\omega \in \Omega} \nu(\omega))^{T} x$$
  
s.t.  $h1_{i}(x) \le 0, i = 1, \dots, m_{1},$ 

and

$$g2(\nu(\omega),\omega) = \inf_{x(\omega),y(\omega)} f2(y(\omega),\omega) - \nu(\omega)^T x(\omega)$$
  
s.t. 
$$h2_i(x(\omega),y(\omega),\omega) \le 0, i = 1, \dots, m_2$$

# **Duality and Problem Reformulations**

- Equivalent formulations of a problem can lead to very different duals
- Reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

#### Common reformulations

- Introduce new variables and equality constraints (we have seen this already)
- Rearrange constraints in subproblems

Note alternative relaxation to the previous stochastic program:

$$\min \mathbb{E}_{\omega}[f1(x(\omega)) + f2(y(\omega), \omega)]$$
  
s.t.  $h1_i(x(\omega)) \le 0, i = 1, \dots, m_1,$   
 $h2_i(x(\omega), y(\omega), \omega) \le 0, i = 1, \dots, m_2,$   
 $x(\omega) = x$ 

This relaxation is probably useless (because subproblem involving x has no constraints)

| Scenario     | Constraints            | Binary Solutions                          |
|--------------|------------------------|-------------------------------------------|
| $\omega = 1$ | $2x_1 + y_1 \le 2$ and | $\mathcal{D}_1 = \{(0,0),(1,0)\}$         |
|              | $2x_1-y_1\geq 0$       |                                           |
| $\omega = 2$ | $x_2 - y_2 \ge 0$      | $\mathcal{D}_2 = \{(0,0),(1,0),(1,1)\}$   |
| $\omega = 3$ | $x_3 + y_3 \leq 1$     | $\mathcal{D}_3 = \{(0,0), (0,1), (1,0)\}$ |

- 3 equally likely scenarios
- Define x as first-stage decision, x<sub>ω</sub> is first-stage decision for scenario ω
- Non-anticipativity constraint:  $x_1 = \frac{1}{3}(x_1 + x_2 + x_3)$

# Formulation of Problem and Dual Function

$$\max(1/3)y_1 + (1/3)y_2 + (1/3)y_3$$
  
s.t.  $2x_1 + y_2 \le 2$   
 $2x_1 - y_1 \ge 0$   
 $x_2 - y_2 \ge 0$   
 $x_3 + y_3 \le 1$   
 $\frac{2}{3}x_1 - \frac{1}{3}x_2 - \frac{1}{3}x_3 = 0, (\lambda)$   
 $x_{\omega}, y_{\omega} \in \{0, 1\}, \omega \in \Omega = \{1, 2, 3\}$ 

$$g(\lambda) = \max_{(x_{\omega}, y_{\omega}) \in \mathcal{D}_{\omega}} \{ \frac{2\lambda}{3} x_1 + \frac{1}{3} y_1 - \frac{\lambda}{3} x_2 + \frac{1}{3} y_2 - \frac{\lambda}{3} x_3 + \frac{1}{3} y_3 \}$$
  
= max(0, 2\lambda/3) + max(0, (-\lambda + 1)/3) + max(1/3, -\lambda/3)

Dual function can be expressed equivalently

$$g(\lambda) \hspace{0.2cm} = \hspace{0.2cm} \left\{ egin{array}{ccc} rac{1}{3} - rac{2}{3}\lambda & \lambda \leq -1 \ rac{2}{3} - rac{1}{3}\lambda & -1 \leq \lambda \leq 0 \ rac{2}{3} + rac{1}{3}\lambda & 0 \leq \lambda \leq 1 \ rac{1}{3} + rac{2}{3}\lambda & 1 \leq \lambda \end{array} 
ight.$$

- Primal optimal value  $p^* = 1/3$  with  $x_1^* = x_2^* = x_3^* = 1$ ,  $y_1^* = 0, y_2^* = 1, y_3^* = 0$
- Dual optimal value  $d^{\star} = 2/3$  at  $\lambda^{\star} = 0$

Conclusion: We have a duality gap of 1/3

# **Alternative Relaxation**

Add new explicit first-stage decision variable *x*, with the following *non-anticipativity constraints*:

$$\begin{array}{rcl} x_1 &=& x, (\lambda_1) \\ x_2 &=& x, (\lambda_2) \\ x_3 &=& x, (\lambda_3) \end{array}$$

Dual function:

$$g(\lambda) = \max_{(x_1,y_1)\in\mathcal{D}_1} \{\frac{1}{3}y_1 - \lambda_1 x_1\} + \max_{(x_2,y_2)\in\mathcal{D}_2} \{\frac{1}{3}y_2 - \lambda_2 x_2\} + \\ \max_{(x_3,y_3)\in\mathcal{D}_3} \{\frac{1}{3}y_3 - \lambda_3 x_3\} + \max_{x\in\{0,1\}} \{(\lambda_1 + \lambda_2 + \lambda_3)x\} \\ = \max(0, -\lambda_1) + \max(0, \frac{1}{3} - \lambda_2) + \max(\frac{1}{3}, -\lambda_3) + \\ \max(0, \lambda_1 + \lambda_2 + \lambda_3)$$

Choosing  $\lambda_1 = 0$ ,  $\lambda_2 = \frac{1}{3}$  and  $\lambda_3 = -\frac{1}{3}$ , we have the following dual function value:

$$g(0, 1/3, -1/3) = 0 + 0 + \frac{1}{3} + 0 = \frac{1}{3}$$

- Different relaxations can result in different duality gaps
- Computational trade-off: introducing more Lagrange multipliers results in better bounds but larger search space

Consider the following notation

- Schedule / power plants over horizon T
- Denote  $x_i^t$  as control of unit *i* in period *t*, denote  $x_i$  [resp.  $x^t$ ] as vector  $(x_i^t)_{t=1}^T$  [resp.  $(x_i^t)_{i \in I}$ ]
- Denote  $\mathcal{D}_i$  as feasible set of unit *i*
- Denote  $C_i(x_i)$  as cost of producing  $x_i$  by unit *i*
- Denote c<sup>t</sup>(x<sup>t</sup>) ≤ 0 as a *complicating constraint* that needs to be satisfied collectively by units, and suppose that it is additive: c<sup>t</sup>(x<sup>t</sup>) = ∑<sub>i∈I</sub> c<sup>t</sup><sub>i</sub>(x<sup>t</sup><sub>i</sub>)

Unit commitment problem:

$$\begin{split} \min \sum_{i \in I} C_i(x_i) \\ x_i \in \mathcal{D}_i, i \in I \\ (u^t): \quad \sum_{i \in I} c_i^t(x_i^t) \leq 0, t = 1, \dots, T \end{split}$$

Relax *complicating constraints* to obtain the following Lagrangian:

$$L(x, u) = \sum_{i \in I} (C_i(x_i) + \sum_{t=1}^T u^t c_i^t(x_i^t))$$

What have we gained? We can solve one problem per plant:

$$\min_{x_i \in \mathcal{D}_i} (C_i(x_i) + \sum_{t=1}^T u^t c_i^t(x_i^t))$$

[1] S. Boyd, "Subgradient methods", EE364b lecture slides, http://stanford.edu/class/ee364b/lectures/

[2] C. Lemaréchal, "Lagrangian Relaxation", Computational combinatorial optimization. Springer Berlin Heidelberg, pp. 112-156, 2001.