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When to Use Lagrange Relaxation

Consider the following optimization problem:

*

p* = maxfy(x)
f(x)<0
h(x) =0

withx e Dc R, f:R" - R™ h:R" - R/

Context for Lagrange relaxation:

@ Complicating constraints f(x) < 0 and h(x) = 0 make the
problem difficult

© Dual function is relatively easy to evaluate

g(u, v) = sup(fo(x) — u”f(x) — vTh(x)) (1)

xeD



|ldea of Dual Decomposition

@ Dual function g(u, v) is convex regardless of primal
problem

@ Computation of g(u, v), m € 9g(u, v) is relatively easy

@ But... g(u, v) may be non-differentiable

ldea: minimize g(u, v) using algorithms that rely on linear
approximation of g(u, v)

@ Subgradient method
@ Cutting plane methods
© Bundle methods



Why Minimize the Dual Function: Bounding p*

Proposition: If u > 0 then g(u, v) > p*
Proof: If X is feasible and u > 0 then

fo(%) < L(X, u,v) < sup L(x,u,v) = g(u, V).
xeD

Minimizing over all feasible x gives p* < g(u, v)

Conclusion: minimizing g(u, v) gives tightest possible bound to
p*



Dual Function Properties

Proposition: g(u, v) is convex lower-semicontinous’. If (u, v)

. . . —f .

is such that (1) has optimal solution x,,y, then (Xuv) is a
—h(Xu,v)

subgradient of g

A

A function is lower-semicontinuous when its epigraph is a closed subset
of R" x R’ x R.



Graphical Interpretation

Think of each x € D as anindex k € K, then

9(u, v) = max(fox — u” f — v hy)
kek

g(u,v) = maxy(for — u” fr, — vThy)

8/22



Table of Contents

e Applications
@ Application in Stochastic Programming
@ Unit Commitment

9/22



Lagrange Relaxation of Stochastic Programs

Consider 2-stage stochastic program:

min f1(x) + E,[f2(y(w), w)]
st Mi(x)<0,i=1,...,my,
h2,~(X,y(w),w) <0,i=1,...,mo

Introduce non-anticipativity constraint x(w) = x and
reformulate problem as

min  E,[f1(x) + f2(y(w),w)]
s.t. hli(x) <0,i=1,...,my,
h2i(x(w), y(w),w) < 0,i =1,...,mp
(v(w)): X(w)=x,wen
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Dual Function of Stochastic Program

Denote v = (v(w),w € Q), then

g(v) = g1(v) + Eug2(v(w),w)

where
giv) = infy A+ (D v(w) x
s.t. h1,-(x)§U(J)€,S/?:1,...,m1,
and
R2r(w),w) = infyyyw 2Y(wW),w) — v(w) x(w)

s.t. h2i(x(w),y(w),w) <0,i=1,...,mo
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Duality and Problem Reformulations

@ Equivalent formulations of a problem can lead to very
different duals

@ Reformulating the primal problem can be useful when the
dual is difficult to derive, or uninteresting
Common reformulations

@ Introduce new variables and equality constraints (we have
seen this already)

@ Rearrange constraints in subproblems
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Rearranging Constraints

Note alternative relaxation to the previous stochastic program:

min B, [f1(x(w)) + f2(y(w), w)]

s.t. h1,( ( ))SO 1, o, My,
h2i(x(w), y(w),w) < 0,i=1,....mp
Xx(w) =x

This relaxation is probably useless (because subproblem
involving x has no constraints)
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A Two-Stage Stochastic Integer Program [Sen, 2000]

Scenario Constraints Binary Solutions
w=1 2xy+y; < 2and Dy ={(0,0),(1,0)}
2x1—y1>20
w=2 Xo— Y220 Dy = {(0,0),(1,0),(1,1)}
w=3 XS+Y3§1 DSZ{(07O)7(0?1)7(170)}

@ 3 equally likely scenarios

@ Define x as first-stage decision, x,, is first-stage decision

for scenario w

@ Non-anticipativity constraint: x; = J(X1 + X2 + X3)

14/22



Formulation of Problem and Dual Function

max(1/3)yr + (1/3)y2+ (1/3)ys
St 2xy + )y <2

2x1—y1 >0

X2—Yy22>0

X3+ ys <1

2 1x2 - 1x3 =0,(\)

3 3 3
X, Yo € {0,1},w e Q={1,2,3}

X1 —

(A) = max {Qx +1 —éx +1 —ix +1 }

= max(0,2X/3) + max(0, (—A + 1)/3) + max(1/3,—A/3)
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Duality Gap

Dual function can be expressed equivalently

1 2

$—52 A< -1

_Ix —1<a<0
g()‘) = 2 1

S+3Ix 0<A<H

THEN 1<

@ Primal optimal value p* = 1/3 with x;' = x3 = x5 = 1,
@ Dual optimal value d* =2/3 at \* =0

Conclusion: We have a duality gap of 1/3
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Alternative Relaxation

Add new explicit first-stage decision variable x, with the
following non-anticipativity constraints:

Xy = X, ()‘1)
X2 = X,(\2)
X3 = X, ()‘3)
Dual function:
A) = max AXqt+  max AoXo b +
g(N) (X1,y1)eD1{ Y1 — X} (x2,y2)eD2{ Yo — AoXo}

max { y3 — )\3X3} + max {()\1 + o + )\3) }
(x3,y3)€D3 3 x€{0,

A2) + max(l,

= max(0,—\1) + max(0, L 3

3
max(0, A1 + A2 + A3)

—A3) +
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Closing the Duality Gap

Choosing A1 = 0, A2 = £ and \3 = — 4, we have the following
dual function value:

1 1
9(0.1/3,-1/3) = 040+ 7 +0=7
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Conclusions of Example

@ Different relaxations can result in different duality gaps

@ Computational trade-off: introducing more Lagrange
multipliers results in better bounds but larger search space
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Unit Commitment

Consider the following notation

@ Schedule I power plants over horizon T

@ Denote x! as control of unit i in period ¢, denote x; [resp.
x'] as vector (x))[_, [resp. (x})ic/]

@ Denote D; as feasible set of unit i

@ Denote Cj(x;) as cost of producing x; by unit i

@ Denote c!(x') < 0 as a complicating constraint that needs
to be satisfied collectively by units, and suppose that it is
additive: ¢!(x?) = >, cl(x))
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Unit commitment problem:
min Z C,'(X,‘)

iel
X € D;,i el

DY el(x) <0 t=1,...,T

iel

Relax complicating constraints to obtain the following
Lagrangian:

.
L(x,u) = Z(CI(XI) + Z u'ci(x)))
1—1

i€l

What have we gained? We can solve one problem per plant:

min (G;(x;) +Zuc )

XeDi t=1
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