
Dynamic Programming
Operations Research

Anthony Papavasiliou

1 / 60



Contents

1 Multi-Stage Decision Making under Uncertainty

2 Dynamic Programming

3 Why Is Dynamic Programming Any Good?

4 Examples
The Knapsack Problem
The Monty Hall Problem
Pricing Financial Securities

2 / 60



Table of Contents

1 Multi-Stage Decision Making under Uncertainty

2 Dynamic Programming

3 Why Is Dynamic Programming Any Good?

4 Examples
The Knapsack Problem
The Monty Hall Problem
Pricing Financial Securities

3 / 60



Setting

Dynamical system with H <∞ discrete time stages
Extensions exist for infinite horizon (H =∞)
Extensions exist for continuous time

Controlled system, denote ut as continuous decision at
stage t
Stochastic system, denote ξt as discrete random vector at
stage t

Extensions exist for continuous uncertainty

Denote xt as continuous state of the system at the end of
stage t

State encodes everything we need to know, except ξt and
ut , for describing the evolution of the system

Transition equation:

xt+1 = ft (xt ,ut , ξt )

4 / 60



Setting (II)

Markovian uncertainty: we can define probability
distribution P[·|xt ,ut ] for ξt , independently of
ξt−1, ξt−2, . . . , ξ0

Denote At (xt ) as set of finite actions at stage t

Costs are additive, denote ct (xt ,ut , ξt ) as cost per time
stage

Usually (but not always), we will assume that xt , ξt , and ut

live in Rn

5 / 60



Block Diagram Representation

Feasible 

action set System 

dynamics

Cost
Random 

input 

distribution

The flow of information is consistent (everything depends
on information that is already revealed)

The process is repeated identically over stages

6 / 60



Sequence of Events

In a given time stage,

1 observe state xt

2 decide ut after observing xt

3 sample ξt from a distribution that depends on xt , ut

4 Incur cost ct (xt ,ut , ξt )

5 Move to new state xt+1

7 / 60



Policy

This is not your ‘usual’ optimization

In ‘usual’ optimization we are looking for an optimal vector
x?

In multi-stage optimization under uncertainty we are
looking for a sequence of functions µt (xt )

The functions µt (xt ) are called a policy, they tell us what
to do if we observe xt in stage t

8 / 60



Objective

Recall costs are additive
For t = 0, . . . ,H − 1, we incur cost ct (xt ,ut , ξt )

Assume final-period cost only depends on xH , i.e. cH(xH)

Key observation: given a policy µt (xt ), we can define a
distribution for the sequence (xt , ξt ), t = 0, . . . ,H

Given a distribution for the sequence (xt , ξt ), t = 0, . . . ,H,
we can define expected cost

E[
H−1∑
t=0

ct (xt , µt (xt ), ξt ) + cH(xH)]

9 / 60



Formal Problem Statement

We are looking for the optimal policy: the policy which
minimizes expected cost

(MP) : min
µt

E[
H−1∑
t=0

ct (xt , µt (xt ), ξt ) + cH(xH)]

µt (xt ) ∈ At (xt )

xt+1 = ft (xt , µt (xt ), ξt )

10 / 60



Recalling Hydrothermal Scheduling

Too much water in dams leads to water spillage and
unnecessary thermal generation costs

Too little water in dams leads to load curtailment

11 / 60



Hydrothermal Scheduling Problem Statement

Time-varying electricity demand Dt

Three options
Hydro units: produce qt at zero cost
Thermal units: produce pt at marginal cost C
Load shedding: cut supply by lt at marginal cost V

Rainfall uncertainty: independent identical normal
distribution with mean µ and standard deviation σ

Hydro reservoir can store up to E units of energy

Thermal generators can produce up to P units of power
per period

12 / 60



Hydrothermal Scheduling Model Description

Continuous action vector: ut = (pt ,qt , lt ) ∈ R3

Continuous state vector xt ∈ R: level of reservoir at the
beginning of stage t

Feasible action set:

At (xt ) = {(pt ,qt , lt ) :

qt ≤ xt

pt + qt + lt = Dt

pt ≤ P

pt ,qt , lt ≥ 0}

Continuous random disturbance ξt ∈ R: rainfall

13 / 60



Hydrothermal Scheduling Model Description (II)

Transition probability function:

P[ξt ≤ R] = Φ(
R − µ
σ

),

where Φ(·) is the cdf of a standard normal random variable

System transition function:

xt+1 = ft (xt ,ut , ξt ) = min(E , xt + ξt − qt )

Cost function:

ct (xt ,ut , ξt ) = C · pt + V · lt

14 / 60



Hydrothermal Scheduling with AR Rainfall

Same problem as before, except rainfall rt follows an
autoregressive (AR) process:

rt = c + φ · rt−1 + wt

c and φ are fixed parameters

wt : independent identical distribution according to a normal
distribution with mean µ and standard deviation σ

15 / 60



Hydrothermal Scheduling with AR Rainfall: Model
Formulation

Redefine random disturbance as ξt = wt ∈ R
State of the system: xt = (et , rt )

T ∈ R2

et : level of energy stored in the reservoir
rt : rainfall

System dynamic function:

xt+1 = (et+1, rt+1)T = ft (xt ,ut , ξt ) =

[
min(E , xt + ξt − qt )

c + φ · rt + ξt

]

16 / 60



Capacity Expansion Problem

Continuous action vector ut = (zt , yt ) ∈ Rnm+n−1

Amount of capacity constructed:
zit = (z1t , . . . , zn−1,t ) ∈ Rn−1

Amount of power that from technology i to block j :
yt = (y11t , . . . , y1mt , . . . , yn1t , . . . , ynmt ) ∈ Rnm

Continuous state vector: capacity that has been
constructed so far for each technology,
xt = vt = (v1t , . . . , vn−1,t ) ∈ Rn−1.

Discrete uncertain demand Dt = (D1t , . . .Dmt ) ∈ Rm with
distribution P[·], independent of xt and ut

17 / 60



Capacity Expansion Problem (II)

Feasible action set:

At (xt ) = {(zt , yt ) :
m∑

j=1

yijt ≤ xit , i = 1, . . . ,n − 1,

n∑
i=1

yijt = Dj , j = 1, . . . ,m

yt ≥ 0, zt ≥ 0}

System transition function:

xi,t+1 = xit + zit , i = 1, . . . ,n − 1

18 / 60



Capacity Expansion Problem (III)

Cost function:

ct (xt ,ut , ξt ) =
n−1∑
i=1

Ii · zit +
n∑

i=1

m∑
j=1

Ci · Tj · yijt ,

where
Ii : investment cost of technology i
Ci : marginal cost of technology i
Tj : (deterministic) duration of block j

Note: capacity built in period t cannot be used for
satisfying the demand of period t

19 / 60



Machine Scheduling: Problem Statement

Machine produces P units of output when on

Cost of C is paid for every period that the machine is on

Machine output earns time-varying price λt

Machine needs to stay on for at least 3 hours once started
up

20 / 60



Machine Scheduling: Model Description

Action set: B = {Stay,Change}

State: number of hours that have elapsed since the
machine was last turned on, belongs to set
Z = {0,1,2, . . .} - 0 belongs to ‘Off’

Feasible action set:

At (0) = {Stay,Change},

At (xt ) = {Stay}, xt = 1,2

At (xt ) = {Stay,Change}, xt ≥ 3

21 / 60



Machine Scheduling: Model Description (II)

System transition function:

xt+1 = ft (0,Stay) = 0

xt+1 = ft (xt ,Stay) = xt + 1, xt ≥ 1

xt+1 = ft (0,Change) = 1

xt+1 = ft (xt ,Change) = 0, xt ≥ 1

Cost function:

ct (xt ,ut ) = (C − λt · P), xt ≥ 1

ct (0,ut ) = 0

22 / 60



Table of Contents

1 Multi-Stage Decision Making under Uncertainty

2 Dynamic Programming

3 Why Is Dynamic Programming Any Good?

4 Examples
The Knapsack Problem
The Monty Hall Problem
Pricing Financial Securities

23 / 60



Value Function

Solving (MP) means solving for a policy / mapping µt , not
a vector ut

Value function Vt (xt ): least expected cost if optimal
decisions would be made from stage t onwards given state
xt

24 / 60



The Dynamic Programming Algorithm

Dynamic programming algorithm:

Starting from t = H, for all xt ∈ At (xt ), compute

VH(xH) = cH(xH).

Moving backwards in time, for all t = H − 1, . . . ,0, for all
xt ∈ At (xt ), compute

Vt (xt ) = min
ut∈At (xt )

Eξt [(ct (xt ,ut , ξt ) + Vt+1(ft+1(xt ,ut , ξt )))|xt ,ut ]

where the expectation is over the distribution of ξt given ut

and xt

25 / 60



Intuition: an optimal policy over a horizon {0, . . . ,H} is optimal
for {t , . . .H}

Value functions Vt (xt ) allow decomposition of multi-period
problem to single-stage optimization problems

26 / 60



Q Function

Define Q functions:

Qt (xt ,ut ) = Eξt [ct (xt ,ut , ξt ) + Vt+1(ft (xt ,ut , ξt ))|xt ,ut ]

Interpretation of Qt (xt ,ut ): cost of being in xt given that action
ut has been selected

Value function as a function of Q function:

Vt (xt ) = min
ut∈At (xt )

Qt (xt ,ut )

27 / 60



Curse of Dimensionality

Consider discretization of each component of xt ∈ Rm, ut ∈ Rn,
ξt ∈ Rp into d points

At stage t , computation of Vt (xt ) for all xt requires

for all dm possible values of xt

compute expectation⇒ summation over dp values of ξt

minimization⇒ comparison of dn possible values of ut

Each stage of DP algorithm requires O(dm+n+p) operations⇒
overall complexity of O(H · dm+n+p)

28 / 60



Table of Contents

1 Multi-Stage Decision Making under Uncertainty

2 Dynamic Programming

3 Why Is Dynamic Programming Any Good?

4 Examples
The Knapsack Problem
The Monty Hall Problem
Pricing Financial Securities

29 / 60



Dynamic Programming

Recall that central entity of DP algorithm is the value function

Main idea of DP efficiency: avoid unnecessary repetition of
computation by storing future cost data in value functions

30 / 60



Traveling Salesman Problem

Goal: starting from city 0, find minimum distance tour that goes
through all cities exactly once and returns to 0

0

1

2

3

1

2

4

7

6

5

cij : distance from city i to city j (indicated on arcs)

31 / 60



Enumeration

Tour Distance
01320 12
02310 12
01230 16
03210 16
02130 22
03120 22

Given H + 1 cities:

must examine H! tours

Computation of cost of each tour: H summations

Complexity of enumeration: O(H! · H)

32 / 60



Dynamic Programming for TSP

Idea: interpret each city as one ‘stage’ in multi-stage decision

State: information necessary for deciding next move

Rt : set of cities that still need to be visited

i : current city

Value function Vt (Rt , i): most efficient way of visiting cities in Rt

exactly once, starting from i and ending in 0

Vt (Rt , i) = min
j∈Rt

cij + Vt+1(Rt − {j}, j)

Note: Vt (Rt , i) is reused

33 / 60



Complexity of Dynamic Programming for TSP

At stage t , computation of Vt for all i , Rt requires:

for H different values of i

for

(
H

H − t

)
different values of Rt

one minimization over H − t values (size of Rt )

Total number of operations:

For V0({1, . . . ,H},0): H summations
For 1 ≤ t ≤ H:∑H

t=1 H ·

(
H

H − t

)
· (H − t + 1) = O(H2 · 2H)

Note: Complexity remains exponential, better than factorial

Where did the computational savings come from?

34 / 60



Value function Evaluation
V3(∅, 1) 1
V3(∅, 2) 5
V3(∅, 3) 7

V2({2}, 1) = c12 + V3(∅, 2) 11
V2({3}, 1) 11
V2({1}, 2) 7
V2({3}, 2) 9
V2({1}, 3) 5
V2({2}, 3) 7

V1({2, 3}, 1) = min{c12 + V2({3}, 2), c13 + V2({2}, 3)} 11
V1({1, 3}, 2) 7
V1({1, 2}, 3) 9

V0({1, 2, 3}, 0) = minx∈{1,2,3}(c0x + V2({1, 2, 3} − {x}, x) 12

35 / 60



Table of Contents

1 Multi-Stage Decision Making under Uncertainty

2 Dynamic Programming

3 Why Is Dynamic Programming Any Good?

4 Examples
The Knapsack Problem
The Monty Hall Problem
Pricing Financial Securities

36 / 60



The Knapsack Problem

Consider a back with space limit W and n items. Denote

vi : benefit of item i

wi > 0: volume of item i

xi : indicator whether item i is chosen or not

p? = max
x

n∑
i=1

vixi

n∑
i=1

wixi ≤W

xi ∈ {0,1} i = 1, . . . ,n,

Suppose all data (W , wi , vi ) is integer

37 / 60



Complexity of Enumeration

Suppose that

Summing two numbers: one unit of time

Taking the minimum of two numbers: negligible

For every combination of items (there are 2n):

Computation of
∑n

i=1 wixi requires n − 1 summations

Computation of
∑n

i=1 vixi requires n − 1 summations

Run time of complete enumeration: 2n · (2n − 2)

38 / 60



Definition of Value Function

Value function V (i ,w):

Domain: {0, . . . , , n} × {0, . . . ,W}

Interpretation: best possible value for a knapsack with
capacity w and to which items from the set {0, . . . , i} can
be inserted

Boundary values:
V (0,w) = 0 (interpretation: no items to include, therefore
zero value)
V (i ,0) = 0 (interpretation: no space in the knapsack,
therefore zero value)

39 / 60



Dynamic Programming Principle of Optimality

V (i ,w) = max{V (i − 1,w − wi) + vi ,V (i − 1,w)}

First argument of max operator: include item i in the
knapsack

Second argument of max operator: do not include item i in
the knapsack

40 / 60



Dynamic Programming Algorithm

for i = 1 : n
for w = 1 : W

V (i ,w) = max{V (i − 1,w −−wi) + vi ,V (i − 1,w)};
end

end

Number of operations: 2 · n ·W
Each evaluation of V (i ,w) requires two time units
Repeat n ·W times

Value of knapsack: p? = V (n,W )

41 / 60



Items Entering the Knapsack

K (i): 1 if item i is included, 0 otherwise

w ←W ;
for i = n : 1 do

K (i)← 0;
if vi + V (i − 1,w − wi) ≥ V (i − 1,w) then

K (i)← 1;
w ← w − wi ;

end if
end for

The total run time: 3 · n

42 / 60



Example: Knapsack Problem

Consider W = 7 and the following list of items

i 1 2 3 4
vi 10 40 30 50
wi 5 4 6 3

43 / 60



Example: Knapsack Problem - Value Function Table

Entry (i , j) corresponds to V (i , j)

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 10 10 10
2 0 0 0 0 40 40 40 40
3 0 0 0 0 40 40 40 40
4 0 0 0 50 50 50 50 90

44 / 60



Example: Knapsack Problem - Items Entering

For n = 4, we have
v4 + V (3,7−w4) = 50 + V (3,4) = 50 + 40 ≥ V (4,7) = 90
⇒ item 4 is included

For n = 3, we have
v3 + V (2,3−w3) = 30 + V (2,−3) = −∞ < V (3,4)⇒ item
3 is included

(Check that) item 2 is included

(Check that) item 1 is not included

45 / 60



The Monty Hall Problem

The following situation emerges in the TV show ‘Let’s Make a
Deal’:

1 A player is asked to pick a curtain

2 The host opens up a curtain with a goat behind it

3 The player can keep the curtain that she chose originally,
or switch to the remaining curtain

4 The player keeps the content behind the curtain that was
selected in step (iii)

Should the player change curtains in step (iii), or not?

46 / 60



Solution of the Monty Hall Problem

Assumption: when the host opens a curtain in step (ii), the host
will choose curtains with equal likelihood if both of the curtains
not chosen by the player hide a goat

Thinking about the decision tree:

We need three stages

Symmetry⇒ we do not lose generality by assuming that
the player picks curtain 1 in the first step

Symmetry + assumption⇒ equal probability of host
opening curtain 2 or curtain 3

Uncertainty in stage 1 is not the location of the sports car,
this cannot be observed!

Compute transition probabilities of second stage using
Bayes’ theorem

47 / 60



Decision Tree of the Newsboy Problem

Curtain 1

Host shows 

curtain 2

Host shows 

curtain 3

Switch

Stay

Switch

Stay

+1

+1

+1

0

0

0

Goat

Car

Car

Goat
0

Car

Goat

Car

Goat

+1

1/3

2/3

1/3

2/3

+2/3

+1/3

+2/3

+1/3

0.5

0.5

+2/3

2/3

2/3

1/3

1/3

48 / 60



Probability of Winnning if We Stay

Bayes’ theorem:

P[Car in C1|Host shows C2] =

P[Car in C1, Host shows C2]

P[Host shows C2]
=

P[Host shows C2|Car in C1] · P[Car in C1]

P[Host shows C2]
=

1/2 · 1/3
1/2

=
1
3

Probability of winning if we stay = original probability of winning
⇒ we have not gained (or lost) anything by staying

Intuitive? Probably ...

49 / 60



Probability of Winnning if We Switch

Bayes’ theorem:

P[Car in C3|Host shows C2] =

P[Car in C3, Host shows C2]

P[Host shows C2]
=

P[Host shows C2|Car in C3] · P[Car in C3]

P[Host shows C2]
=

1 · 1/3
2/3

=
2
3

Chances of winning double if we switch!
Intuitive? Try this: the host deliberately leaves one door
unrevealed

50 / 60



Thinking About the Solution

Two wrong ways to think about the probability of winning if we
switch

Switching is like picking one of three doors⇒
P[Car|Switch] = 1/3

Switching is like picking one of the two leftover doors⇒
P[Win|Switch] = 1/2

51 / 60



Pricing Financial Securities

American call option: financial instrument that allows its owner
to buy a certain financial asset at a strike price at or before a
certain expiration date

Call option at time t is worth max(St − k ,0), where

St : price of financial asset at time t

k : strike price of the option

Use DP in order to determine how much an option is worth at
time t = 0

52 / 60



Lattice Model of Stock Price St

82.75

73.72

65.68

58.52

52.14

46.45

78.11

69.59

62.00

55.24

49.21

73.72

65.68

58.52

52.14

55.24

62.00

69.59

65.68

58.52

62.00

t=0

t=1

t=2

t=3

t=4

t=5

Consider the following transition probabilities:

upward: q = 0.5577

downward: 1− q

53 / 60



Backward Solution

Denote Vt (i) as the value of the option at stage t , and state i ,
where i corresponds to one of the nodes in the lattice

Consider strike price k = 60

Period 5 payoff:

V5(1) = 82.75− 60 = 22.75

V5(2) = 73.72− 60 = 13.72

V5(3) = 65.68− 60 = 5.68

V5(4) = 0

V5(5) = 0

V5(6) = 0

54 / 60



Backward Solution (II)

Period 4 payoff:

V4(1) = max(78.11− 60,E[V5(j)|i = 1]) = 18.7560

V4(2) = max(69.59− 60,E[V5(j)|i = 2]) = 10.1639

V4(3) = max(62− 60,E[V5(j)|i = 3]) = 3.1677

V4(4) = 0

V4(5) = 0

Period 3 payoff:

V3(1) = max(73.72− 60,E[V4(j)|i = 1]) = 14.9557

V3(2) = max(65.68− 60,E[V4(j)|i = 2]) = 7.0695

V3(3) = max(0,E[V4(j)|i = 3]) = 1.7666

V3(4) = 0
55 / 60



Backward Solution (III)

Period 2 payoff:

V2(1) = max(69.59− 60,E[V3(j)|i = 1]) = 11.4676

V2(2) = max(62− 60,E[V3(j)|i = 2]) = 4.7240

V2(3) = 0.9852

Period 1 payoff:

V1(1) = max(65.68− 60,E[V2(j)|i = 1]) = 8.4849

V1(2) = max(0,E[V2(j)|i = 2]) = 3.0703

Period 0 payoff:

V0(1) = max(62− 60,E[V1(j)|i = 1]) = 6.09

56 / 60



Optimal Exercise Policy

Note that in the previous example the optimal policy was to hold
on to the American call option

We will now prove that this was not a coincidence

57 / 60



General Model of Asset Price Evolution

Consider the following asset price model: given asset price St

at stage t

upward transition in t + 1 with probability q results in stock
price u · St with u > 1

downward transition in t + 1 with probability 1− q results in
stock price d · St with d < 1

Choose q so that expected value of asset does not change:

q =
1− d
u − d

58 / 60



Optimal Exercise Policy of American Call Option

We will show that it is optimal to hold on to American call option
until expiration

Using induction, it suffices to show that Cu ≥ u · S − k and
Cd ≥ d · S − k , where

C: value of call option at stage t

Cu/Cd : value of call option at stage t + 1

Cuu/Cud/Cdd : value of call option at stage t + 2

59 / 60



Optimal Exercise Policy of American Call Option

Value of waiting at top node of stage t + 1:

Cu = q · Cuu + (1− q) · Cud

≥ q ·max(u2 · S − k ,0) + (1− q) ·max(u · d · S − k ,0)

≥ max(q(u2 · S − k) + (1− q) · (u · d · S − k),0)

= max(u · S − k ,0)

≥ u · S − k

First inequality: expected payoff in stage t + 2 at least as
much as exercising the option in stage t + 2

Second inequality: convexity of max(x ,0)

Same reasoning⇒ Cd ≥ d · S − k

60 / 60


	Multi-Stage Decision Making under Uncertainty
	Dynamic Programming
	Why Is Dynamic Programming Any Good?
	Examples
	The Knapsack Problem
	The Monty Hall Problem
	Pricing Financial Securities


