Duality Operations Research

Anthony Papavasiliou

4 ロ ト 4 回 ト 4 直 ト 4 直 ト 2 の Q ()
1/24

<ロ><部</p>
<ロ><部</p>
<10</p>
<1

- Optimality Conditions
- 4 Dual Multipliers in Software

Lagrangian Function

Standard form problem (not necessarily convex):

min $f_0(x)$ s.t. $f_i(x) \le 0, i = 1, ..., m$ $h_i(x) = 0, i = 1, ..., p$

 $x \in \mathbb{R}^{n}$, domain \mathcal{D} , optimal value p^{*} Lagrangian function: $L : \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \to \mathbb{R}$, dom $L = \mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p}$:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- Weighted sum of the objective and constraint functions
- λ_i is the Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is the Lagrange multiplier associated with the equality constraint $h_i(x) = 0$

Lagrange dual function: $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$

=
$$\inf_{x \in \mathcal{D}} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x))$$

g is concave, can be $-\infty$ for some $\lambda,
u$

Dual Function is Concave

Consider any (λ_1, ν_1) , (λ_2, ν_2) with $\lambda_1, \lambda_2 \ge 0$ and $\alpha \in [0, 1]$

$$g(\alpha\lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha\nu_{1} + (1 - \alpha)\nu_{2})$$

$$= \inf_{x \in \mathcal{D}} (f_{0}(x) + \sum_{i=1}^{m} (\alpha\lambda_{1,i}f_{i}(x) + (1 - \alpha)\lambda_{2,i}f_{i}(x)))$$

$$+ \sum_{i=1}^{p} (\alpha\nu_{1,i}h_{i}(x) + (1 - \alpha)\nu_{2,i}h_{i}(x)))$$

$$\geq \alpha \inf_{x \in \mathcal{D}} (f_{0}(x) + \sum_{i=1}^{m} \lambda_{1,i}f_{i}(x) + \sum_{i=1}^{p} \nu_{1,i}h_{i}(x))$$

$$+ (1 - \alpha) \inf_{x \in \mathcal{D}} (f_{0}(x) + \sum_{i=1}^{m} \lambda_{2,i}f_{i}(x) + \sum_{i=1}^{p} \nu_{2,i}h_{i}(x))$$

$$= \alpha g(\lambda_{1}, \nu_{1}) + (1 - \alpha)g(\lambda_{2}, \nu_{2})$$

If $\lambda \ge 0$ then $g(\lambda, \nu) \le p^*$ Proof: If \tilde{x} is feasible and $\lambda \ge 0$ then

$$f_0(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu).$$

Minimizing over all feasible \tilde{x} gives $p^* \ge g(\lambda, \nu)$

Lagrange Relaxation of Stochastic Programs

Consider 2-stage stochastic program:

$$\begin{aligned} \min f(x) &+ \mathbb{E}_{\omega}[f2(y(\omega), \omega)] \\ \text{s.t. } h1_i(x) &\leq 0, i = 1, \dots, m_1, \\ h2_i(x, y(\omega), \omega) &\leq 0, i = 1, \dots, m_2 \end{aligned}$$

Introduce **non-anticipativity constraint** $x(\omega) = x$ and reformulate problem as

$$\begin{aligned} \min f(x) + \mathbb{E}_{\omega}[f2(y(\omega), \omega)] \\ \text{s.t. } h1_i(x) &\leq 0, i = 1, \dots, m_1, \\ h2_i(x(\omega), y(\omega), \omega) &\leq 0, i = 1, \dots, m_2 \\ (\nu(\omega)): \quad x(\omega) &= x \end{aligned}$$

Dual Function of Stochastic Program

$$g(
u) = g1(
u) + \mathbb{E}_{\omega}g2(
u(\omega), \omega)$$

where

$$g1(\nu) = \inf f1(x) + (\sum_{\omega \in \Omega} \nu(\omega))^T x$$

s.t. $h1_i(x) \le 0, i = 1, \dots, m_1,$

and

$$g2(\nu,\omega) = \inf f2(y(\omega),\omega) - \nu x(\omega)$$

s.t. $h2_i(x(\omega), y(\omega), \omega) \le 0, i = 1, \dots, m_2$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 9/24

 Lagrange dual problem:

$$egin{array}{ll} d^{\star} = \max g(\lambda,
u) \ extsf{s.t.} \ \lambda \geq egin{array}{ll} \lambda \geq egin{array}{ll} 0 \end{array} \end{array}$$

- Finds best lower bound on p* from Lagrangian dual function
- Convex optimization problem with optimal value d*
- λ, ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \text{dom } g$

Weak duality: $d^* \le p^*$

- Always holds (for convex and non-convex problems)
- Can be used for finding non-trivial bounds to difficult problems
- Strong duality: $p^{\star} = d^{\star}$
 - Does not hold in general
 - Usually holds for convex problems
 - Conditions that guarantee strong duality in convex problems are called constraint qualifications

Linear Programming Duality Mnemonic Table

Primal	Minimize	Maximize	Dual
Constraints	$\geq b_i$	\geq 0	Variables
	$\leq b_i$	\leq 0	
	$= b_i$	Free	
Variables	\geq 0	$\leq c_j$	Constraints
	\leq 0	$\geq c_j$	
	Free	$= c_j$	

Prove the mnemonic table using Lagrangian relaxation

・・・・
 ・・・
 ・・
 ・・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 <li

Complementary Slackness

If strong duality holds, x^* primal optimal, λ^*, ν^* dual optimal

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*}) = \inf_{x} (f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x))$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x^{*})$$

$$\leq f_{0}(x^{*})$$

Therefore, the two inequalities above hold with equality and

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^* f_i(x^*) = 0$ for i = 1, ..., m

This is known as complementary slackness:

$$\lambda_i^{\star} > \mathbf{0} \Rightarrow f_i(\mathbf{x}^{\star}) = \mathbf{0} \quad f_i(\mathbf{x}^{\star}) < \mathbf{0} \Rightarrow \lambda_i^{\star} = \mathbf{0}$$

KKT Conditions

KKT conditions for a problem with differentiable f_i , h_i :

- Primal constraints: $f_i(x) \leq 0, i = 1, ..., m$,
 - $h_i(x) = 0, i = 1, \ldots, p$
- Dual constraints: $\lambda \ge 0$
- Complementary slackness: $\lambda_i f_i(x) = 0, i = 1, ..., m$
- Gradient of the Lagrangian function with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

From previous slide, if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

KKT Conditions of Maximization with Linear Constraints

Consider a maximization problem with linear constraints:

 $\max f(x, y)$ $(\lambda): Ax + By \le b$ $(\mu): Cx + Dy = d$ $(\lambda_2): x \ge 0$

Then the KKT conditions have the following form:

$$Cx + Dy - d = 0$$

$$0 \le \lambda \perp Ax + By - b \le 0$$

$$0 \le x \perp \lambda^T A + \mu^T C - \nabla_x f(x, y)^T \ge 0$$

$$\lambda^T B + \mu^T D - \nabla_y f(x, y)^T = 0$$

・ロ・・母・・ヨ・・ヨ・ ・ ヨ・ うへぐ

Example: The Diet Problem - KKT Conditions

Consider the diet problem with $b_1 = 1$ and $b_2 = 2$:

$$\begin{aligned} \min x_1 + 2x_2 + x_3 \\ (\pi_1): & 0.5x_1 + 4x_2 + x_3 = 1 \\ (\pi_2): & 2x_1 + x_2 + 2x_3 = 2 \\ & x_1, x_2, x_3 \ge 0 \end{aligned}$$

KKT conditions:

$$0.5x_1 + 4x_2 + x_3 = 1 \tag{1}$$

$$2x_1 + x_2 + 2x_3 = 2 \tag{2}$$

$$0 \le x_1 \perp 0.5\pi_1 + 2\pi_2 + 1 \ge 0 \tag{3}$$

$$0 \le x_2 \perp 4\pi_1 + \pi_2 + 2 \ge 0 \tag{4}$$

$$0 \le x_3 \perp \pi_1 + 2\pi_2 + 1 \ge 0 \tag{5}$$

Example: The Diet Problem - Equivalent KKT Systems

Note: Since $h(x) = 0 \Leftrightarrow -h(x) = 0$, we can get a different KKT system with a different solution π^* :

$$0.5x_1 + 4x_2 + x_3 = 1 \tag{6}$$

$$2x_1 + x_2 + 2x_3 = 2 \tag{7}$$

$$0 \le x_1 \perp -0.5\pi_1 - 2\pi_2 + 1 \ge 0 \tag{8}$$

$$0 \le x_2 \perp -4\pi_1 - \pi_2 + 2 \ge 0 \tag{9}$$

$$0 \le x_3 \perp -\pi_1 - 2\pi_2 + 1 \ge 0 \tag{10}$$

Claim:

- Primal optimal solution: $(x^*)^T = (0, 0.1429, 0.4286, 0)$
- Dual optimal solution: $(\pi^*)^T = (0.4286, 0.2857)$

Proof: verify that x^* and π^* satisfy KKT conditions

Non-Uniqueness of KKT Conditions

- The KKT conditions of a problem depend on how we define the Lagrangian function
- The sign of dual multipliers depends on the KKT conditions (therefore, how we define the Lagrangian function)
- The sensitivity interpretation of dual multipliers depends on the KKT conditions (therefore, how we define the Lagrangian function)
- Oifferent software interprets user syntax differently!

In order to be able to anticipate the sign of multipliers that AMPL will assign to constraints, note that:

- A constraint of the form f₁(x) ≤, =, ≥ f₂(x) is equivalently expressed as f₁(x) − f₂(x) ≤, =, ≥ 0,
- the constraints are relaxed by <u>subtracting</u> their product with their corresponding multiplier from the Lagrangian function,
- the sign of the dual multiplier is such that the Lagrangian function provides a bound to the optimization problem,
- the primal-dual optimal pair is such that the KKT conditions corresponding to this Lagrangian function are satisfied.
- In this way, the dual multipliers reported by AMPL can always be interpreted as sensitivities.

{min
$$x + 2y$$
 s.t. $0 \le x, (\lambda_1), x \le 2, (\lambda_2), y = 1, (\mu)$ }

23/24

Objective function f(x, y) = x + 2y, inequality constraints $f_1(x, y) = -x \le 0$ (i.e., $a \le \text{constraint}$), $f_2(x, y) = x - 2$, h(x, y) = y - 1

• AMPL Lagrangian: $L(x, y) = (x + 2y) - \lambda_1(-x) - \lambda_2(x - 2) - \mu(y - 1)$

KKT conditions:

- Primal feasibility: $g_1(x, y) \le 0, g_2(x, y) \le 0, h(x, y) = 0$
- Dual feasibility: $\lambda_1 \leq 0, \lambda_2 \leq 0$
- Complementarity: $\lambda_1 \perp g_1(x, y), \lambda_2 \perp g_2(x, y)$
- Stationarity:

$$\nabla f(x, y) - \lambda_1 \nabla g_1(x, y) - \lambda_2 \nabla g_2(x, y) - \mu \nabla h(x, y) = 0$$

Solution: $x = 0, y = 1, \lambda_1 = -1, \lambda_2 = 0, \mu = 2$

4 ロ ト 4 部 ト 4 王 ト 4 王 ト 王 少 Q ペ
24/24