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Lagrangian Function

Standard form problem (not necessarily convex):

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . ,p

x ∈ Rn, domain D, optimal value p?

Lagrangian function: L : Rn × Rm × Rp → R,
dom L = D × Rm × Rp:

L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi(x) +
p∑

i=1

νihi(x)

Weighted sum of the objective and constraint functions
λi is the Lagrange multiplier associated with fi(x) ≤ 0
νi is the Lagrange multiplier associated with the equality
constraint hi(x) = 0
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Dual Function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x , λ, ν)

= inf
x∈D

(f0(x) +
m∑

i=1

λi fi(x) +
p∑

i=1

νihi(x))

g is concave, can be −∞ for some λ, ν
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Dual Function is Concave

Consider any (λ1, ν1), (λ2, ν2) with λ1, λ2 ≥ 0 and α ∈ [0,1]

g(αλ1 + (1− α)λ2, αν1 + (1− α)ν2)

= inf
x∈D

(f0(x) +
m∑

i=1

(αλ1,i fi(x) + (1− α)λ2,i fi(x))

+

p∑
i=1

(αν1,ihi(x) + (1− α)ν2,ihi(x)))

≥ α inf
x∈D

(f0(x) +
m∑

i=1

λ1,i fi(x) +
p∑

i=1

ν1,ihi(x))

+(1− α) inf
x∈D

(f0(x) +
m∑

i=1

λ2,i fi(x) +
p∑

i=1

ν2,ihi(x))

= αg(λ1, ν1) + (1− α)g(λ2, ν2)

6 / 24



Dual Function is a Lower Bound

If λ ≥ 0 then g(λ, ν) ≤ p?

Proof: If x̃ is feasible and λ ≥ 0 then

f0(x̃) ≥ L(x̃ , λ, ν) ≥ inf
x∈D

L(x , λ, ν) = g(λ, ν).

Minimizing over all feasible x̃ gives p? ≥ g(λ, ν)
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Lagrange Relaxation of Stochastic Programs

Consider 2-stage stochastic program:

min f1(x) + Eω[f2(y(ω), ω)]

s.t. h1i(x) ≤ 0, i = 1, . . . ,m1,

h2i(x , y(ω), ω) ≤ 0, i = 1, . . . ,m2

Introduce non-anticipativity constraint x(ω) = x and
reformulate problem as

min f1(x) + Eω[f2(y(ω), ω)]

s.t. h1i(x) ≤ 0, i = 1, . . . ,m1,

h2i(x(ω), y(ω), ω) ≤ 0, i = 1, . . . ,m2

(ν(ω)) : x(ω) = x
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Dual Function of Stochastic Program

g(ν) = g1(ν) + Eωg2(ν(ω), ω)

where

g1(ν) = inf f1(x) + (
∑
ω∈Ω

ν(ω))T x

s.t. h1i(x) ≤ 0, i = 1, . . . ,m1,

and

g2(ν, ω) = inf f2(y(ω), ω)− νx(ω)

s.t. h2i(x(ω), y(ω), ω) ≤ 0, i = 1, . . . ,m2
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The Dual Problem

Lagrange dual problem:

d? = max g(λ, ν)

s.t. λ ≥ 0

Finds best lower bound on p? from Lagrangian dual
function

Convex optimization problem with optimal value d?

λ, ν are dual feasible if λ ≥ 0, (λ, ν) ∈ dom g
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Weak and Strong Duality

Weak duality: d? ≤ p?

Always holds (for convex and non-convex problems)

Can be used for finding non-trivial bounds to difficult
problems

Strong duality: p? = d?

Does not hold in general

Usually holds for convex problems

Conditions that guarantee strong duality in convex
problems are called constraint qualifications
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Linear Programming Duality Mnemonic Table

Primal Minimize Maximize Dual
Constraints ≥ bi ≥ 0 Variables

≤ bi ≤ 0
= bi Free

Variables ≥ 0 ≤ cj Constraints
≤ 0 ≥ cj

Free = cj

Prove the mnemonic table using Lagrangian relaxation
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Complementary Slackness

If strong duality holds, x? primal optimal, λ?, ν? dual optimal

f0(x?) = g(λ?, ν?) = inf
x
(f0(x) +

m∑
i=1

λ?i fi(x) +
p∑

i=1

ν?i hi(x))

≤ f0(x?) +
m∑

i=1

λ?i fi(x?) +

p∑
i=1

ν?i hi(x?)

≤ f0(x?)

Therefore, the two inequalities above hold with equality and

x? minimizes L(x , λ?, ν?)

λ?i fi(x?) = 0 for i = 1, . . . ,m

This is known as complementary slackness:

λ?i > 0⇒ fi(x?) = 0 fi(x?) < 0⇒ λ?i = 0
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KKT Conditions

KKT conditions for a problem with differentiable fi ,hi :

Primal constraints: fi(x) ≤ 0, i = 1, . . . ,m,
hi(x) = 0, i = 1, . . . ,p

Dual constraints: λ ≥ 0

Complementary slackness: λi fi(x) = 0, i = 1, . . . ,m

Gradient of the Lagrangian function with respect to x
vanishes:

∇f0(x) +
m∑

i=1

λi∇fi(x) +
p∑

i=1

νi∇hi(x) = 0

From previous slide, if strong duality holds and x , λ, ν are
optimal, then they must satisfy the KKT conditions
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KKT Conditions of Maximization with Linear Constraints

Consider a maximization problem with linear constraints:

max f (x , y)

(λ) : Ax + By ≤ b

(µ) : Cx + Dy = d

(λ2) : x ≥ 0

Then the KKT conditions have the following form:

Cx + Dy − d = 0

0 ≤ λ ⊥ Ax + By − b ≤ 0

0 ≤ x ⊥ λT A + µT C −∇x f (x , y)T ≥ 0

λT B + µT D −∇y f (x , y)T = 0
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Example: The Diet Problem - KKT Conditions

Consider the diet problem with b1 = 1 and b2 = 2:

min x1 + 2x2 + x3

(π1) : 0.5x1 + 4x2 + x3 = 1

(π2) : 2x1 + x2 + 2x3 = 2

x1, x2, x3 ≥ 0

KKT conditions:

0.5x1 + 4x2 + x3 = 1 (1)

2x1 + x2 + 2x3 = 2 (2)

0 ≤ x1 ⊥ 0.5π1 + 2π2 + 1 ≥ 0 (3)

0 ≤ x2 ⊥ 4π1 + π2 + 2 ≥ 0 (4)

0 ≤ x3 ⊥ π1 + 2π2 + 1 ≥ 0 (5)
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Example: The Diet Problem - Equivalent KKT Systems

Note: Since h(x) = 0⇔ −h(x) = 0, we can get a different KKT
system with a different solution π?:

0.5x1 + 4x2 + x3 = 1 (6)

2x1 + x2 + 2x3 = 2 (7)

0 ≤ x1 ⊥ −0.5π1−2π2 + 1 ≥ 0 (8)

0 ≤ x2 ⊥ −4π1−π2 + 2 ≥ 0 (9)

0 ≤ x3 ⊥ −π1−2π2 + 1 ≥ 0 (10)

Claim:

Primal optimal solution: (x?)T = (0,0.1429,0.4286,0)

Dual optimal solution: (π?)T = (0.4286,0.2857)

Proof: verify that x? and π? satisfy KKT conditions
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Non-Uniqueness of KKT Conditions

1 The KKT conditions of a problem depend on how we
define the Lagrangian function

2 The sign of dual multipliers depends on the KKT conditions
(therefore, how we define the Lagrangian function)

3 The sensitivity interpretation of dual multipliers depends on
the KKT conditions (therefore, how we define the
Lagrangian function)

4 Different software interprets user syntax differently!
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Dual Multipliers in AMPL

In order to be able to anticipate the sign of multipliers that
AMPL will assign to constraints, note that:

A constraint of the form f1(x) ≤,=,≥ f2(x) is equivalently
expressed as f1(x)− f2(x) ≤,=,≥ 0,

the constraints are relaxed by subtracting their product with
their corresponding multiplier from the Lagrangian function,

the sign of the dual multiplier is such that the Lagrangian
function provides a bound to the optimization problem,

the primal-dual optimal pair is such that the KKT conditions
corresponding to this Lagrangian function are satisfied.

In this way, the dual multipliers reported by AMPL can
always be interpreted as sensitivities.
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Example

{min x + 2y s.t. 0 ≤ x , (λ1), x ≤ 2, (λ2), y = 1, (µ)}

Objective function f (x , y) = x + 2y , inequality constraints
f1(x , y) = −x ≤ 0 (i.e., a ≤ constraint), f2(x , y) = x − 2,
h(x , y) = y − 1

AMPL Lagrangian:
L(x , y) = (x + 2y)− λ1(−x)− λ2(x − 2)− µ(y − 1)
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AMPL KKT Conditions

KKT conditions:

Primal feasibility: g1(x , y) ≤ 0, g2(x , y) ≤ 0, h(x , y) = 0

Dual feasibility: λ1 ≤ 0, λ2 ≤ 0

Complementarity: λ1 ⊥ g1(x , y), λ2 ⊥ g2(x , y)

Stationarity:

∇f (x , y)− λ1∇g1(x , y)− λ2∇g2(x , y)− µ∇h(x , y) = 0

Solution: x = 0, y = 1, λ1 = −1, λ2 = 0, µ = 2
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