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Lagrangian Function
Standard form problem (not necessarily convex):
min fo(x)
st filx)<0,i=1,....m
hi(x)=0,i=1,...,p
x € R", domain D, optimal value p*

Lagrangian function: L : R” x R” x RP — R,
dom L =D x R™ x RP:

p
L(x,\ v) +Z)\f )+ vihi(x)
i=1

@ Weighted sum of the objective and constraint functions

@ ); is the Lagrange multiplier associated with fi(x) < 0

@ v; is the Lagrange multiplier associated with the equality
constraint hj(x) =0



Dual Function

Lagrange dual function: g : R™ x RP — R,

g(/\,U) = XiQfDL(X7>‘aV)
m p
= inf (fo(x) + D ONifi(x) + > wihi(x))
i=1 =1

g is concave, can be —oo for some A, v
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Dual Function is Concave

Consider any (A1, 1), (A2, 2) with A1, A2 > 0 and « € [0, 1]

glart + (1 — a)rg, avy + (1 — a)wo)

= inf (fo(x) +§m: (aXifi(X) + (1 — a)2ifi(x))
i=1
—i—Z avy jh (1 — e jhi(x)))
p
> O‘JQIJ(fO(X) + Z A1,ifi(X) + 21: v1,ihi(X))

p
+(1—a) |nf (fo(x +Z)\2, +ZV2,ihi(X))
i=1

= ag()\1,V1) (1 - Ol)g()\27V2)



Dual Function is a Lower Bound

If A > 0then g(\,v) < p*
Proof: If x is feasible and A > 0 then

fo(X) > L(X, A\, v) > inf L(x, \,v) = g(\v).
xeD

Minimizing over all feasible x gives p* > g(\, v)
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Lagrange Relaxation of Stochastic Programs

Consider 2-stage stochastic program:

min f1(x) + E,[f2(y(w), w)]
st Mi(x)<0,i=1,...,my,
h2,~(X,y(w),w) <0,i=1,...,mo

Introduce non-anticipativity constraint x(w) = x and
reformulate problem as

min f1(x) + E,[f2(y(w), w)]

st hli(x)<0,i=1,...,my,

h2i(x(w), ¥(w),w) <0,i=1,...,mp
(M) x(w) = x



Dual Function of Stochastic Program

g(v) = g1(v) + Eug2(v(w),w)

where

gl(v) =infAx)+ (D v(w)) x
weN
st hli(x) <0,i=1,...,my,

and

92(v,w) = inff2(y(w),w) — vx(w)
s.t. h2j(x(w), y(w),w) <0,i=1,...,mp



Table of Contents

9 Weak and Strong Duality

10/24



The Dual Problem

Lagrange dual problem:

d* =maxg(\v)
st.A>0

@ Finds best lower bound on p* from Lagrangian dual
function

@ Convex optimization problem with optimal value d*

@ )\, v are dual feasible if A > 0, (\,v) € dom g
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Weak and Strong Duality

Weak duality: d* < p*
@ Always holds (for convex and non-convex problems)

@ Can be used for finding non-trivial bounds to difficult
problems

Strong duality: p* = d*
@ Does not hold in general
@ Usually holds for convex problems

@ Conditions that guarantee strong duality in convex
problems are called constraint qualifications
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Linear Programming Duality Mnemonic Table

Primal Minimize | Maximize Dual
Constraints > b >0 Variables
< b; <0
= b; Free
Variables >0 < ¢ Constraints
<0 > G
Free =C

Prove the mnemonic table using Lagrangian relaxation
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Complementary Slackness

If strong duality holds, x* primal optimal, \*, »* dual optimal
m P
fo(x*) = g(\*,v*) = iQf(fo(x) + Z A fi(x) + Z vi hi(x))
i=1 i=1

m p
< RO+ DN+ vihi(xY)
i=1 i=1
< fo(x?)

Therefore, the two inequalities above hold with equality and
@ Xx* minimizes L(x, \*,v*)
@ \ifi(x*)=0fori=1,....m

This is known as complementary slackness:

N>0=fi(x)=0 fi(x*)<0=A=0
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KKT Conditions

KKT conditions for a problem with differentiable f;, h;:
@ Primal constraints: fi(x) <0,i=1,...,m,
hi(x)=0,i=1,....p
@ Dual constraints: A > 0
@ Complementary slackness: \fi(x) =0,i=1,...,m
@ Gradient of the Lagrangian function with respect to x
vanishes:

Vi x)+Z)\Vf +Zu,Vh (x) =
i=1

From previous slide, if strong duality holds and x, A\, v are
optimal, then they must satisfy the KKT conditions
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KKT Conditions of Maximization with Linear Constraints

Consider a maximization problem with linear constraints:

max f(x,y)
(A): Ax+By<b
(n): Cx+Dy=d
(A2): x>0

Then the KKT conditions have the following form:

Cx+Dy—-d=0
0<ALAx+By—b<0
0<xLANA+uTC—Vif(x,y)T >0
ATB+u"™D -V, f(x,y)T =0
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Example: The Diet Problem - KKT Conditions

Consider the diet problem with by = 1 and by, = 2:

min Xy + 2Xo + X3
(m1): 0.5xy +4x0+ X3 =1
(7T2) T 2Xy+ Xo+2x3 =2

X1,X2,X3 > 0
KKT conditions:

0.5x1 +4x0 + x3 =1 (1)
2X1 + Xo +2x3 =2 (2)
0<x4 L0051 +2m+12>0 (3)
0<xld4mi+m+2>0 (4)
0<x3 Lmi+2m+1>0 (5)
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Example: The Diet Problem - Equivalent KKT Systems

Note: Since h(x) = 0 & —h(x) = 0, we can get a different KKT
system with a different solution 7*:

0.5xy +4x5 + x3 = 1 (6)
2X1 + Xo + 2X3 = 2 (7)
0<xy L-05m-2m+1>0 (8)
0<x% 1l -4ry—m+2>0 (9)
0<x3l-m-2m+12>0 (10)

Claim:
@ Primal optimal solution: (x*)T = (0,0.1429, 0.4286,0)
@ Dual optimal solution: (7*)7 = (0.4286,0.2857)

Proof: verify that x* and =* satisfy KKT conditions
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Non-Uniqueness of KKT Conditions

@ The KKT conditions of a problem depend on how we
define the Lagrangian function

© The sign of dual multipliers depends on the KKT conditions
(therefore, how we define the Lagrangian function)

© The sensitivity interpretation of dual multipliers depends on
the KKT conditions (therefore, how we define the
Lagrangian function)

© Different software interprets user syntax differently!

A
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Dual Multipliers in AMPL

In order to be able to anticipate the sign of multipliers that
AMPL will assign to constraints, note that:

@ A constraint of the form f;(x) <,=,> f(x) is equivalently
expressed as fi(x) — h(x) <,=,> 0,

@ the constraints are relaxed by subtracting their product with
their corresponding multiplier from the Lagrangian function,

@ the sign of the dual multiplier is such that the Lagrangian
function provides a bound to the optimization problem,

@ the primal-dual optimal pair is such that the KKT conditions
corresponding to this Lagrangian function are satisfied.

@ In this way, the dual multipliers reported by AMPL can
always be interpreted as sensitivities.
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{minX—|—2y s.t. 0 <x, ()‘1)7)( < 27(A2)7y = 17(”)}

Objective function f(x, y) = x + 2y, inequality constraints
fi(x,y) = —x <0 (i.e., a < constraint), fo(x,y) = x — 2,
h(x,y) =y —1
@ AMPL Lagrangian:
Lx,y) = (x +2y) = M(=X) = Xo(x = 2) — pu(y — 1)

23/24



AMPL KKT Conditions

KKT conditions:
@ Primal feasibility: g1(x,y) <0, g2(x,y) <0, h(x,y) =0
@ Dual feasibility: A1 <0, \» <0
@ Complementarity: A1 L g1(x,¥), A2 L go(X,y)

@ Stationarity:

VX, y) = MVgi(x,y) — X2Vae(x,y) — uVh(x,y) =0

Solution: x =0,y =1, A\ =—-1, 0 =0,u=2
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