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Cutting Plane Methods

Cutting plane methods: optimization methods which are
based on the idea of iteratively refining the objective function or
set of feasible constraints of a problem through linear
inequalities
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Kelley’s Cutting Plane Algorithm

Kelley’s cutting plane algorithm is designed for solving convex
non-differentiable optimization problems:

z? = min cT x + F (x)

s.t. x ∈ X

where

X is a compact convex subset of Rn

F : Rn → R is a convex function

c ∈ Rn is a parameter vector
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Kelley’s Cutting Plane Algorithm

Define

Lk : Rn → R as lower bounding function of F (x) at iteration
k

Lower bound Lk of z? at iteration k

Upper bound Uk of z? at iteration k

Idea: gradually bound F (x) from below with functions Lk (x)
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Kelley’s Cutting Plane Algorithm

Step 0: Set k = 0, and assume x1 ∈ X given. Set L0(x) = −∞
for all x ∈ X , U0 = cT x1 + F (x1), and L0 = −∞

Step 1: Set k = k + 1. Find ak ∈ R and bk ∈ Rn such that

F (xk ) = ak + bT
k xk

F (xk ) ≥ ak + bT
k x , x ∈ X

Step 2: Set
Uk = min(Uk−1, cT xk + F (xk ))

and
Lk (x) = max(Lk−1(x),ak + bT

k x), x ∈ X
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Kelley’s Cutting Plane Algorithm

Step 3: Compute

Lk = min
x∈X

cT x + Lk (x)

and denote xk as the optimal solution of this problem

Step 4: If Uk − Lk = 0, stop; else, repeat from step 1
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Nomenclature of Cutting Plane Methods

Benders decomposition: specific method for obtaining
the cutting planes when F (x) is the value function of a
second-stage linear program

L-shaped method: specific instance of Benders
decomposition when second-stage linear program is
decomposable into a set of scenarios

Multi-cut L-shaped method: alternative to L-shaped
method which generates multiple cutting planes at step 1
of Kelley’s method

Cutting plane methods generalized to bundle methods in
non-differentiable convex optimization (commonly used in
Lagrange relaxation)

9 / 42



Table of Contents

1 Cutting Plane Methods

2 Context and Description of Benders Decomposition

3 Useful Results

4 Statement of Algorithm and Proof of Convergence

5 Example: Capacity Expansion Planning

10 / 42



When to Use Benders Decomposition

Consider the following optimization problem:

z? = min cT x + qT y

Ax = b

Tx + Wy = h

x , y ≥ 0

with x ∈ Rn1 , y ∈ Rn2 , c ∈ Rn1 , b ∈ Rm1 , A ∈ Rm1×n1 , q ∈ Rn2 ,
h ∈ Rm2 , T ∈ Rm2×n1 , W ∈ Rm2×n2

This is not (necessarily) a stochastic program

This is a two-stage program
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Context for Benders decomposition:

1 entire problem is difficult to solve

2 if Tx + Wy = h is ignored, problem is relatively easy

3 if x is fixed, problem is relatively easy
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Idea of Benders Decomposition

Define value function V : Rn1 → R

(S) : V (x) = min
y

qT y

Wy = h − Tx

y ≥ 0

Equivalent description of problem

min cT x + V (x)

Ax = b

x ∈ dom V

x ≥ 0

Note: dom V = {x : ∃y ,Tx + Wy = h, y ≥ 0}
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Graphical Description of Benders Decomposition
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Dual of Second-Stage Linear Program

The dual of (S) can be expressed as:

(D) : max
π

πT (h − Tx)

πT W ≤ qT

Note: feasible region of (D) does not depend on x

V : set of extreme points of πT W ≤ qT

R: set of extreme rays of πT W ≤ qT

16 / 42



π ∈ V , σ ∈ R do not depend on x , can be enumerated
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Value Function Is Piecewise Linear

V (x) is a piecewise linear convex function of x

If π0 is dual optimal multiplier of (S) given x0, then

πT
0 (h − Tx0)

is a supporting hyperplane of V (x) at x0

We recall a previous result for the proof
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Parametrizing the Right-Hand Side

Define c(u) as optimal value of

c(u) = min f0(x)

fi(x) ≤ ui , i = 1, . . . ,m

where x ∈ dom f0 is the convex domain of f0(x) and f0, fi are
convex functions

c(u) is convex

Suppose strong duality holds and denote λ? as the
maximizer of the dual function
infx∈dom f0(f0(x)− λT (f (x)− u) for λ ≤ 0. Then λ? ∈ ∂c(u).
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From previous result:

V (h − Tx) is convex, so V (x) is convex

π0 ∈ ∂V (h − Tx0), so πT
0 (h − Tx) is a supporting

hyperplane of V (x) at x0

(S) has a finite number of dual optimal multipliers⇒ finite
number of supporting hyperplanes for V (x)⇒ V (x) is
piecewise linear convex
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Domain of Value Function

dom V can be expressed equivalently as follows:

dom V = {σT (h − Tx) ≤ 0, σ ∈ R}

where σ ∈ R is the set of extreme rays of πT W ≤ qT
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Proof that dom V ⊆ {σT (h − Tx) ≤ 0, σ ∈ R}:

Suppose x ∈ dom V and σT (h − Tx) > 0 for some σ ∈ R

σ is an extreme ray⇒ σT W ≤ 0

Consider any dual feasible vector π0: π0 + λσ is feasible for
any λ ≥ 0

Since σT (h − Tx) > 0, (D) becomes unbounded

Contradiction with assumption that x ∈ dom V ⇒
σT (h − Tx) ≤ 0 for all σ ∈ R
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Proof that {σT (h − Tx) ≤ 0, σ ∈ R} ⊆ dom V :

Any ray of πT W ≤ qT can be expressed as convex
combination of extreme rays

Therefore, for any ray σ of πT W ≤ qT it follows that
σT (h − Tx) ≤ 0⇒ (D) cannot become unbounded
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Reformulation

min cT x + θ

Ax = b

σT
r (h − Tx) ≤ 0, σr ∈ R

θ ≥ πT
v (h − Tx), πv ∈ V

x ≥ 0

θ: free auxiliary variable
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Master Problem

Relax inequalities that define V (x) and dom V :

(M) : zk = min cT x + θ

Ax = b

σT (h − Tx) ≤ 0, σ ∈ Rk ⊆ R

θ ≥ πT (h − Tx), π ∈ Vk ⊆ V

x ≥ 0
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Bounds and Exchange of Information

Solution of master problem provides:

lower bound zk ≤ z?

candidate solution xk

under-estimator of V (xk ), θk ≤ V (xk )

Solution of slave problem with input xk provides:

upper bound cT xk + qT yk+1 ≥ z?

new vertex πk+1 or new extreme ray σk+1
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Benders Decomposition Algorithm

Step 0: Set k = 0, V0 = R0 = ∅.
Step 1: Solve (M). Store xk .

If (M) is feasible, store xk .

If (M) is infeasible, exit. Problem is infeasible.

Step 2: Solve (S) with xk as input.

If (S) is infeasible, let Rk+1 = Rk ∪ {σk+1}. Let k = k + 1
and return to step 1.

If (S) is feasible, let Vk+1 = Vk ∪ {πk+1}
If Vk = Vk+1, terminate with (xk , yk+1) as optimal solution.
Else, let k = k + 1 and return to step 1.

Finite termination since V and R are finite
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Proof of Convergence

Denote xk as solution of (M) and use it as input in (S)

Suppose (S) is feasible, denote πk+1 as optimal vertex. If
πk+1 ∈ Vk then xk is optimal.

Suppose (S) is infeasible, denote σk+1 as extreme ray.
Then σk+1 /∈ Rk .
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Proof that πk+1 ∈ Vk ⇒ xk is optimal

For any x feasible, cT x + V (x) ≥ cT xk + θk because (M) is
a relaxation of the original problem

If θk = V (xk ), then xk is optimal since for any x feasible,
cT x + V (x) ≥ cT xk + V (xk )

We already know that θk ≤ V (xk ) (first bullet)

Need to show that θk ≥ V (xk ) (next slide)
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Proof that πk+1 ∈ Vk ⇒ θk ≥ V (xk )

We know that V (xk ) = πT
k+1(h − Txk ) (why?)

Since θ ≥ πT (h− Tx), π ∈ Vk is enforced in (M) at iteration
k , if Vk+1 = Vk then θk ≥ πT

k+1(h − Txk )

Combining the above relationships,
θk ≥ πT

k+1(h − Txk ) = V (xk )
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Proof that (S) infeasible⇒ σk+1 /∈ Rk

σk+1 is an extreme ray⇒ σT
k+1(h − Txk ) > 0

If σk+1 ∈ Rk , then σT
k+1(h − Txk ) ≤ 0 (contradicting the first

bullet)

Therefore, σk+1 /∈ Rk
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Load Duration Curve

Load duration curve is obtained by sorting load time series in
descending order
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Mathematical Programming Formulation

min
x ,y≥0

n∑
i=1

(Ii · xi +
m∑

j=1

Ci · Tj · yij)

s.t.
n∑

i=1

yij = Dj , j = 1, . . . ,m

m∑
j=1

yij ≤ xi , i = 1, . . .n − 1

Ii ,Ci : fixed/variable cost of technology i

Dj ,Tj : height/width of load block j

yij : capacity of i allocated to j

xi : capacity of i
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Problem Data

Technology Fuel cost ($/MWh) Inv cost ($/MWh)
Coal 25 16
Gas 80 5

Nuclear 6.5 32
Oil 160 2

Duration (hours) Level (MW)
Base load 8760 0-4235

Medium load 7000 4235-7496
Peak load 1500 7496-10401
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Benders Decomposition Master

(M) : min
x≥0

n∑
i=1

Ii · xi + θ

θ ≥
m∑

j=1

λv
j Dj +

n∑
i=1

ρv
i xi , (λ

k , ρk ) ∈ Vk

θ ≥ 0

λk
j , ρk

i : dual optimal multipliers of slave

Note θ ≥ 0

because slave has has non-negative cost

necessary for boundedness of master
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Benders Decomposition Slave

(S) : min
y≥0

n∑
i=1

m∑
j=1

Ci · Tj · yij

(λj) :
n∑

i=1

yij = Dj , j = 1, . . . ,m

(ρi) :
m∑

j=1

yij ≤ x̄i , i = 1, . . .n − 1

x̄i : trial decision from master
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Sequence of Investments

Iteration Coal (MW) Gas (MW) Nuclear (MW) Oil (MW)
1 0 0 0 0
2 0 0 0 8735.6
3 0 0 0 18565.1
4 0 14675.8 0 0
5 10673.3 0 0 0
6 0 0 7337.9 3063.1
7 0 1497.7 7337.9 732.2
8 0 1497.7 7337.9 2033.3
9 0 0 8966 1435

10 2851.8 2187.2 5362 0
11 8321 0 0 2080
12 6989.5 4489.5 56.5 0
13 3261 2905 4235 0
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Observations

A new investment proposal is necessarily made in each
iteration (why?)

Greedy behavior
First iteration: no investment
Early iterations: technologies with low investment cost
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