Cutting Plane Methods
 Operations Research

Anthony Papavasiliou

Contents

(1) Cutting Plane Methods
(2) Context and Description of Benders Decomposition
(3) Useful Results

4 Statement of Algorithm and Proof of Convergence
(5) Example: Capacity Expansion Planning

Table of Contents

(1) Cutting Plane Methods
(2) Context and Description of Benders Decomposition
(3) Useful Results

4 Statement of Algorithm and Proof of Convergence
(5) Example: Capacity Expansion Planning

Cutting Plane Methods

Cutting plane methods: optimization methods which are based on the idea of iteratively refining the objective function or set of feasible constraints of a problem through linear inequalities

Kelley's Cutting Plane Algorithm

Kelley's cutting plane algorithm is designed for solving convex non-differentiable optimization problems:

$$
\begin{aligned}
& z^{\star}=\min c^{T} x+F(x) \\
& \text { s.t. } x \in X
\end{aligned}
$$

where

- X is a compact convex subset of \mathbb{R}^{n}
- $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function
- $c \in \mathbb{R}^{n}$ is a parameter vector

Kelley's Cutting Plane Algorithm

Define

- $L_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as lower bounding function of $F(x)$ at iteration k
- Lower bound L_{k} of z^{\star} at iteration k
- Upper bound U_{k} of z^{\star} at iteration k

Idea: gradually bound $F(x)$ from below with functions $L_{k}(x)$

Kelley's Cutting Plane Algorithm

Step 0: Set $k=0$, and assume $x_{1} \in X$ given. Set $L_{0}(x)=-\infty$ for all $x \in X, U_{0}=c^{T} x_{1}+F\left(x_{1}\right)$, and $L_{0}=-\infty$

Step 1: Set $k=k+1$. Find $a_{k} \in \mathbb{R}$ and $b_{k} \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
& F\left(x_{k}\right)=a_{k}+b_{k}^{T} x_{k} \\
& F\left(x_{k}\right) \geq a_{k}+b_{k}^{T} x, x \in X
\end{aligned}
$$

Step 2: Set

$$
U_{k}=\min \left(U_{k-1}, c^{T} x_{k}+F\left(x_{k}\right)\right)
$$

and

$$
L_{k}(x)=\max \left(L_{k-1}(x), a_{k}+b_{k}^{T} x\right), x \in X
$$

Kelley's Cutting Plane Algorithm

Step 3: Compute

$$
L_{k}=\min _{x \in X} c^{T} x+L_{k}(x)
$$

and denote x_{k} as the optimal solution of this problem

Step 4: If $U_{k}-L_{k}=0$, stop; else, repeat from step 1

Nomenclature of Cutting Plane Methods

- Benders decomposition: specific method for obtaining the cutting planes when $F(x)$ is the value function of a second-stage linear program
- L-shaped method: specific instance of Benders decomposition when second-stage linear program is decomposable into a set of scenarios
- Multi-cut L-shaped method: alternative to L-shaped method which generates multiple cutting planes at step 1 of Kelley's method
- Cutting plane methods generalized to bundle methods in non-differentiable convex optimization (commonly used in Lagrange relaxation)

Table of Contents

(1) Cutting Plane Methods

(2) Context and Description of Benders Decomposition
(3) Useful Results

4 Statement of Algorithm and Proof of Convergence
(5) Example: Capacity Expansion Planning

When to Use Benders Decomposition

Consider the following optimization problem:

$$
\begin{aligned}
& z^{\star}=\min c^{T} x+q^{T} y \\
& A x=b \\
& T x+W y=h \\
& x, y \geq 0
\end{aligned}
$$

with $x \in \mathbb{R}^{n_{1}}, y \in \mathbb{R}^{n_{2}}, c \in \mathbb{R}^{n_{1}}, b \in \mathbb{R}^{m_{1}}, A \in \mathbb{R}^{m_{1} \times n_{1}}, q \in \mathbb{R}^{n_{2}}$, $h \in \mathbb{R}^{m_{2}}, T \in \mathbb{R}^{m_{2} \times n_{1}}, W \in \mathbb{R}^{m_{2} \times n_{2}}$

- This is not (necessarily) a stochastic program
- This is a two-stage program

Context for Benders decomposition:
(1) entire problem is difficult to solve
(2) if $T x+W y=h$ is ignored, problem is relatively easy
(3) if x is fixed, problem is relatively easy

Idea of Benders Decomposition

Define value function $V: \mathbb{R}^{n_{1}} \rightarrow \mathbb{R}$

$$
\begin{aligned}
(S): & V(x)=\min _{y} q^{T} y \\
& W y=h-T x \\
& y \geq 0
\end{aligned}
$$

Equivalent description of problem

$$
\begin{aligned}
& \min c^{\top} x+V(x) \\
& A x=b \\
& x \in \operatorname{dom} V \\
& x \geq 0
\end{aligned}
$$

Note: $\operatorname{dom} V=\{x: \exists y, T x+W y=h, y \geq 0\}$

Graphical Description of Benders Decomposition

Table of Contents

(1) Cutting Plane Methods
(2) Context and Description of Benders Decomposition
(3) Useful Results

4 Statement of Algorithm and Proof of Convergence
(5) Example: Capacity Expansion Planning

Dual of Second-Stage Linear Program

The dual of (S) can be expressed as:

$$
\begin{aligned}
(D): & \max _{\pi} \pi^{T}(h-T x) \\
& \pi^{T} W \leq q^{T}
\end{aligned}
$$

Note: feasible region of (D) does not depend on x

- V : set of extreme points of $\pi^{T} W \leq q^{T}$
- R : set of extreme rays of $\pi^{T} W \leq q^{T}$

$\pi \in V, \sigma \in R$ do not depend on x, can be enumerated

Value Function Is Piecewise Linear

- $V(x)$ is a piecewise linear convex function of x
- If π_{0} is dual optimal multiplier of (S) given x_{0}, then

$$
\pi_{0}^{T}\left(h-T x_{0}\right)
$$

is a supporting hyperplane of $V(x)$ at x_{0}

We recall a previous result for the proof

Parametrizing the Right-Hand Side

Define $c(u)$ as optimal value of

$$
\begin{aligned}
& c(u)=\min f_{0}(x) \\
& f_{i}(x) \leq u_{i}, i=1, \ldots, m
\end{aligned}
$$

where $x \in \operatorname{dom} f_{0}$ is the convex domain of $f_{0}(x)$ and f_{0}, f_{i} are convex functions

- $c(u)$ is convex
- Suppose strong duality holds and denote λ^{\star} as the maximizer of the dual function $\inf _{x \in \operatorname{dom}} f_{0}\left(f_{0}(x)-\lambda^{T}(f(x)-u)\right.$ for $\lambda \leq 0$. Then $\lambda^{\star} \in \partial c(u)$.
\triangle

From previous result:

- $V(h-T x)$ is convex, so $V(x)$ is convex
- $\pi_{0} \in \partial V\left(h-T x_{0}\right)$, so $\pi_{0}^{T}(h-T x)$ is a supporting hyperplane of $V(x)$ at x_{0}
- (S) has a finite number of dual optimal multipliers \Rightarrow finite number of supporting hyperplanes for $V(x) \Rightarrow V(x)$ is piecewise linear convex

Domain of Value Function

dom V can be expressed equivalently as follows:

$$
\operatorname{dom} V=\left\{\sigma^{T}(h-T x) \leq 0, \sigma \in R\right\}
$$

where $\sigma \in R$ is the set of extreme rays of $\pi^{T} W \leq q^{T}$

Proof that dom $V \subseteq\left\{\sigma^{\top}(h-T x) \leq 0, \sigma \in R\right\}$:

- Suppose $x \in \operatorname{dom} V$ and $\sigma^{T}(h-T x)>0$ for some $\sigma \in R$
- σ is an extreme ray $\Rightarrow \sigma^{\top} W \leq 0$
- Consider any dual feasible vector $\pi_{0}: \pi_{0}+\lambda \sigma$ is feasible for any $\lambda \geq 0$
- Since $\sigma^{T}(h-T x)>0$, (D) becomes unbounded
- Contradiction with assumption that $x \in \operatorname{dom} V \Rightarrow$ $\sigma^{T}(h-T x) \leq 0$ for all $\sigma \in R$

Proof that $\left\{\sigma^{T}(h-T x) \leq 0, \sigma \in R\right\} \subseteq \operatorname{dom} V$:

- Any ray of $\pi^{\top} W \leq q^{T}$ can be expressed as convex combination of extreme rays
- Therefore, for any ray σ of $\pi^{T} W \leq q^{T}$ it follows that $\sigma^{T}(h-T x) \leq 0 \Rightarrow(D)$ cannot become unbounded

Reformulation

$$
\begin{aligned}
& \min c^{T} x+\theta \\
& A x=b \\
& \sigma_{r}^{T}(h-T x) \leq 0, \sigma_{r} \in R \\
& \theta \geq \pi_{v}^{T}(h-T x), \pi_{v} \in V \\
& x \geq 0
\end{aligned}
$$

θ : free auxiliary variable

Master Problem

Relax inequalities that define $V(x)$ and dom V :

$$
\begin{aligned}
(M): & z_{k}=\min c^{T} x+\theta \\
& A x=b \\
& \sigma^{T}(h-T x) \leq 0, \sigma \in R_{k} \subseteq R \\
& \theta \geq \pi^{T}(h-T x), \pi \in V_{k} \subseteq V \\
& x \geq 0
\end{aligned}
$$

Bounds and Exchange of Information

Solution of master problem provides:

- lower bound $z_{k} \leq z^{\star}$
- candidate solution x_{k}
- under-estimator of $V\left(x_{k}\right), \theta_{k} \leq V\left(x_{k}\right)$

Solution of slave problem with input x_{k} provides:

- upper bound $c^{\top} x_{k}+q^{\top} y_{k+1} \geq z^{\star}$
- new vertex π_{k+1} or new extreme ray σ_{k+1}

Table of Contents

(1) Cutting Plane Methods

(2) Context and Description of Benders Decomposition
(3) Useful Results

4 Statement of Algorithm and Proof of Convergence
(5) Example: Capacity Expansion Planning

Benders Decomposition Algorithm

Step 0: Set $k=0, V_{0}=R_{0}=\emptyset$.
Step 1: Solve (M). Store x_{k}.

- If (M) is feasible, store x_{k}.
- If (M) is infeasible, exit. Problem is infeasible.

Step 2: Solve (S) with x_{k} as input.

- If (S) is infeasible, let $R_{k+1}=R_{k} \cup\left\{\sigma_{k+1}\right\}$. Let $k=k+1$ and return to step 1.
- If (S) is feasible, let $V_{k+1}=V_{k} \cup\left\{\pi_{k+1}\right\}$
- If $V_{k}=V_{k+1}$, terminate with $\left(x_{k}, y_{k+1}\right)$ as optimal solution.
- Else, let $k=k+1$ and return to step 1 .

Finite termination since V and R are finite

Proof of Convergence

Denote x_{k} as solution of (M) and use it as input in (S)

- Suppose (S) is feasible, denote π_{k+1} as optimal vertex. If $\pi_{k+1} \in V_{k}$ then x_{k} is optimal.
- Suppose (S) is infeasible, denote σ_{k+1} as extreme ray. Then $\sigma_{k+1} \notin R_{k}$.

Proof that $\pi_{k+1} \in V_{k} \Rightarrow x_{k}$ is optimal

- For any x feasible, $c^{T} x+V(x) \geq c^{T} x_{k}+\theta_{k}$ because (M) is a relaxation of the original problem
- If $\theta_{k}=V\left(x_{k}\right)$, then x_{k} is optimal since for any x feasible, $c^{\top} x+V(x) \geq c^{T} x_{k}+V\left(x_{k}\right)$
- We already know that $\theta_{k} \leq V\left(x_{k}\right)$ (first bullet)
- Need to show that $\theta_{k} \geq V\left(x_{k}\right)$ (next slide)

Proof that $\pi_{k+1} \in V_{k} \Rightarrow \theta_{k} \geq V\left(x_{k}\right)$

- We know that $V\left(x_{k}\right)=\pi_{k+1}^{T}\left(h-T x_{k}\right)$ (why?)
- Since $\theta \geq \pi^{T}(h-T x), \pi \in V_{k}$ is enforced in (M) at iteration k, if $V_{k+1}=V_{k}$ then $\theta_{k} \geq \pi_{k+1}^{T}\left(h-T x_{k}\right)$
- Combining the above relationships,

$$
\theta_{k} \geq \pi_{k+1}^{T}\left(h-T x_{k}\right)=V\left(x_{k}\right)
$$

Proof that (S) infeasible $\Rightarrow \sigma_{k+1} \notin R_{k}$

- σ_{k+1} is an extreme ray $\Rightarrow \sigma_{k+1}^{T}\left(h-T x_{k}\right)>0$
- If $\sigma_{k+1} \in R_{k}$, then $\sigma_{k+1}^{T}\left(h-T x_{k}\right) \leq 0$ (contradicting the first bullet)
- Therefore, $\sigma_{k+1} \notin R_{k}$

Table of Contents

(1) Cutting Plane Methods

(2) Context and Description of Benders Decomposition
(3) Useful Results
4. Statement of Algorithm and Proof of Convergence
(5) Example: Capacity Expansion Planning

Load Duration Curve

Load duration curve is obtained by sorting load time series in descending order

Mathematical Programming Formulation

$$
\begin{aligned}
& \min _{x, y \geq 0} \sum_{i=1}^{n}\left(I_{i} \cdot x_{i}+\sum_{j=1}^{m} C_{i} \cdot T_{j} \cdot y_{i j}\right) \\
& \text { s.t. } \sum_{i=1}^{n} y_{i j}=D_{j}, j=1, \ldots, m \\
& \sum_{j=1}^{m} y_{i j} \leq x_{i}, i=1, \ldots n-1
\end{aligned}
$$

- I_{i}, C_{i} : fixed/variable cost of technology i
- D_{j}, T_{j} : height/width of load block j
- $y_{i j}$: capacity of i allocated to j
- x_{i} : capacity of i

Problem Data

Technology	Fuel cost (\$/MWh)	Inv cost (\$/MWh)
Coal	25	16
Gas	80	5
Nuclear	6.5	32
Oil	160	2

	Duration (hours)	Level (MW)
Base load	8760	$0-4235$
Medium load	7000	$4235-7496$
Peak load	1500	$7496-10401$

Benders Decomposition Master

$$
\begin{aligned}
(M): & \min _{x \geq 0} \sum_{i=1}^{n} I_{i} \cdot x_{i}+\theta \\
& \theta \geq \sum_{j=1}^{m} \lambda_{j}^{v} D_{j}+\sum_{i=1}^{n} \rho_{i}^{v} x_{i},\left(\lambda^{k}, \rho^{k}\right) \in V_{k} \\
& \theta \geq 0
\end{aligned}
$$

$\lambda_{j}^{k}, \rho_{i}^{k}$: dual optimal multipliers of slave

Note $\theta \geq 0$

- because slave has has non-negative cost
- necessary for boundedness of master

Benders Decomposition Slave

$$
\begin{aligned}
& (S): \min _{y \geq 0} \sum_{i=1}^{n} \sum_{j=1}^{m} C_{i} \cdot T_{j} \cdot y_{i j} \\
& \left(\lambda_{j}\right): \sum_{i=1}^{n} y_{i j}=D_{j}, j=1, \ldots, m \\
& \left(\rho_{i}\right): \quad \sum_{j=1}^{m} y_{i j} \leq \bar{x}_{i}, i=1, \ldots n-1
\end{aligned}
$$

\bar{x}_{i} : trial decision from master

Sequence of Investments

Iteration	Coal (MW)	Gas (MW)	Nuclear (MW)	Oil (MW)
1	0	0	0	0
2	0	0	0	8735.6
3	0	0	0	18565.1
4	0	14675.8	0	0
5	10673.3	0	0	0
6	0	0	7337.9	3063.1
7	0	1497.7	7337.9	732.2
8	0	1497.7	7337.9	2033.3
9	0	0	8966	1435
10	2851.8	2187.2	5362	0
11	8321	0	0	2080
12	6989.5	4489.5	56.5	0
13	3261	2905	4235	0

Observations

- A new investment proposal is necessarily made in each iteration (why?)
- Greedy behavior
- First iteration: no investment
- Early iterations: technologies with low investment cost

