Cutting Plane Methods

Operations Research

Anthony Papavasiliou

1/42



@ Cutting Plane Methods

e Context and Description of Benders Decomposition
@ Useful Results

e Statement of Algorithm and Proof of Convergence

e Example: Capacity Expansion Planning

2/42



Table of Contents

0 Cutting Plane Methods

3/42



Cutting Plane Methods

Cutting plane methods: optimization methods which are
based on the idea of iteratively refining the objective function or
set of feasible constraints of a problem through linear
inequalities



Kelley’s Cutting Plane Algorithm

Kelley’s cutting plane algorithm is designed for solving convex
non-differentiable optimization problems:

z* =minc’x + F(x)

st.xe X

where
@ X is a compact convex subset of R”
@ F:R" — R is a convex function

@ c € R"is a parameter vector



Kelley’s Cutting Plane Algorithm

Define

@ L4 :R" — R as lower bounding function of F(x) at iteration
k

@ Lower bound Ly of z* at iteration k

@ Upper bound Uy of z* at iteration k

Idea: gradually bound F(x) from below with functions L (x)
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Kelley’s Cutting Plane Algorithm

Step 0: Set k = 0, and assume xy € X given. Set Ly(x) = —o0
forall x € X, Uy = ¢"x; + F(xy), and Ly = —o0

Step 1: Set k = k + 1. Find ax € R and by € R" such that

F(Xk) = ag + b/ZXk
F(xk) > ak +blx,x e X

Step 2: Set
Uk = min(Ux_1, ¢ X + F(xk))

and
Lk(x) = max(Lx_1(X), ax + bl x), x € X



Kelley’s Cutting Plane Algorithm

Step 3: Compute
Lk =mincTx + Li(x)
xeX
and denote xi as the optimal solution of this problem

Step 4: If Ux — Lx = 0, stop; else, repeat from step 1
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Nomenclature of Cutting Plane Methods

@ Benders decomposition: specific method for obtaining
the cutting planes when F(x) is the value function of a
second-stage linear program

@ L-shaped method: specific instance of Benders
decomposition when second-stage linear program is
decomposable into a set of scenarios

@ Multi-cut L-shaped method: alternative to L-shaped
method which generates multiple cutting planes at step 1
of Kelley’s method

@ Cutting plane methods generalized to bundle methods in
non-differentiable convex optimization (commonly used in
Lagrange relaxation)
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When to Use Benders Decomposition

Consider the following optimization problem:
z*=minc'x+q"y
Ax=Db
Tx+Wy=h
X,y >0
withx e RM, y e R, ce RM, be R™M, Aec R™M>*M qe R™,
heRM T c RMXM W c RMX

@ This is not (necessarily) a stochastic program

@ This is a two-stage program
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Context for Benders decomposition:

@ entire problem is difficult to solve
@ if Tx + Wy = his ignored, problem is relatively easy
Q if x is fixed, problem is relatively easy
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ldea of Benders Decomposition

Define value function V : R — R

(8): V(x)=min q’y
Wy =h-Tx
y=>0

Equivalent description of problem

minc’x + V(x)
Ax=b

x € dom V
x>0

Note: dom V = {x : 3y, Tx + Wy = h,y > 0}
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Graphical Description of Benders Decomposition

LTz + V()
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Dual of Second-Stage Linear Program

The dual of (S) can be expressed as:

(D) : mgmrT(h— Tx)

rTW<q’

Note: feasible region of (D) does not depend on x

@ V: set of extreme points of 77 W < q”
@ R: setof extremeraysof 7’ W < q”
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T3 T4

g1

T2
{ﬂ'TW < qT} C RmM2

02

m € V,o € Rdo notdepend on x, can be enumerated
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Value Function Is Piecewise Linear

@ V(x) is a piecewise linear convex function of x

@ If mg is dual optimal multiplier of (S) given xp, then
g (h— Txo)

is a supporting hyperplane of V(x) at xp

We recall a previous result for the proof
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Parametrizing the Right-Hand Side

Define c(u) as optimal value of

c(u) = min fo(x)

ilx)<u,i=1,...,m

where x € dom fy is the convex domain of f(x) and fy, f; are
convex functions

@ c(u) is convex

@ Suppose strong duality holds and denote \* as the
maximizer of the dual function
infycgom £,(fo(X) — AT(f(x) — u) for A < 0. Then A* € dc(u).

A
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From previous result:
@ V(h— TXx) is convex, so V(x) is convex
@ 1o € OV(h— Txp), so g (h— Tx) is a supporting
hyperplane of V(x) at xu
@ (S) has a finite number of dual optimal multipliers = finite
number of supporting hyperplanes for V(x) = V(x) is
piecewise linear convex
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7d (h — Tx)

Y

Zo T
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Domain of Value Function

dom V can be expressed equivalently as follows:
dom V = {¢7(h—Tx) < 0,0 € R}

where ¢ € R is the set of extreme rays of 7' W < q”
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Proof that dom V C {¢"(h— Tx) < 0,0 € R}:

@ Suppose x € dom V and ¢ (h — Tx) > 0 for some o € R

@ sisanextremeray = o'W <0

@ Consider any dual feasible vector mg: mg + Ao is feasible for
any A >0

@ Since o' (h — Tx) > 0, (D) becomes unbounded

@ Contradiction with assumption that x € dom V =
oT(h—Tx)<Oforalloc € R
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Proof that {¢"(h— Tx) < 0,0 € R} C dom V:

@ Anyray of 77 W < q' can be expressed as convex
combination of extreme rays

@ Therefore, for any ray o of 77 W < g it follows that
oT(h— Tx) < 0 = (D) cannot become unbounded
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zo ¢ dom V

dom V C R™

ocl'(h—Tz)<0
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Reformulation

minc’x + 6

Ax=>b
ol(h—Tx)<0,0,€R
0>nl(h—Tx),m eV

x>0

0: free auxiliary variable
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Master Problem

Relax inequalities that define V(x) and dom V:

(M): zx=mincx+6
Ax=b>b
oT(h—Tx)<0,0 € RkCR
0> (h—Tx),re V,CV
x>0
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Bounds and Exchange of Information

T & Vi
or Lk

or & Ry

(5)

Solution of master problem provides:
@ lower bound z, < z*
@ candidate solution xx
@ under-estimator of V(xx), 0x < V(xk)
Solution of slave problem with input xx provides:
@ upper bound ¢”xx + q ki1 > Z*

@ new vertex mg¢ Or new extreme ray og. 1
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Benders Decomposition Algorithm

Step 0: Set k =0, Vo = Ry = 0.
Step 1: Solve (M). Store xk.

@ If (M) is feasible, store x.

@ If (M) is infeasible, exit. Problem is infeasible.
Step 2: Solve (S) with xx as input.

e If (S) is infeasible, let Rx. 1 = Rk U{oks1}. Letk =k +1
and return to step 1.
o If (S) is feasible, let Vi1 = Vi U{mx1}
o If Vi = Vi 4, terminate with (xk, yx.1) as optimal solution.
o Else, let k = k41 and return to step 1.

Finite termination since V and R are finite
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Proof of Convergence

Denote xi as solution of (M) and use it as input in (S)

@ Suppose (S) is feasible, denote 74, 1 as optimal vertex. If
k1 € Vi then xi is optimal.

@ Suppose (S) is infeasible, denote o, 1 as extreme ray.
Then O k41 ¢ Ry.
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Proof that 41 € Vx = X is optimal

@ For any x feasible, ¢’ x + V(x) > ¢”xx + 6 because (M) is
a relaxation of the original problem

e If 6x = V(xx), then x, is optimal since for any x feasible,
cTx+ V(x) > cTx+ V(x)

@ We already know that 6, < V/(x) (first bullet)

@ Need to show that 6, > V(xk) (next slide)

32/42



Proof that mx. 1 € Vi = 0 > V(xk)

@ We know that V(xx) = [, {(h — Txk) (why?)

@ Since 0 > w7 (h— Tx), 7 € V is enforced in (M) at iteration
K, if Vicr1 = Vi then 6 > =], (h— Txe)

@ Combining the above relationships,
Ok > w1 (h— Txi) = V(x)
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Proof that (S) infeasible = o1 ¢ Rk

@ o)1 IS an extreme ray = a[+1(h —Txk) >0

@ If ok € Rk, then akTH(h — Txx) < 0 (contradicting the first
bullet)

@ Therefore, ok, 1 ¢ Rk
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Load Duration Curve

14000
12000
10000 Peakloaa\\_‘
. B0 Medium load
= el
= 500 = Original data
— Approximation
4 Base load
200
1 2 3 L 500 B 7 8
Hours

Load duration curve is obtained by sorting load time series in
descending order
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Mathematical Programming Formulation

n m
i / T;
f}!‘o_(' X’+];C' i Vi)

n
s.t. Zy,-j:Dj,j:L...,m

i=1

m
> yi<xii=1,...n—1
=1

@ [;, C;: fixed/variable cost of technology i
@ D;, T;: height/width of load block j

@ yj: capacity of i allocated to j

@ Xx;: capacity of i/
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Problem Data

Technology Fuel cost ($/MWh) Inv cost ($/MWh)
Coal 25 16
Gas 80 5
Nuclear 6.5 32
Oil 160 2

Duration (hours) Level (MW)

Base load 8760 0-4235
Medium load 7000 4235-7496
Peak load 1500 7496-10401
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Benders Decomposition Master

9>Z>‘ D +Zplxl7 7p € Vk
920

XK, pk: dual optimal multipliers of slave

Note 6 > 0
@ because slave has has non-negative cost

@ necessary for boundedness of master
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Benders Decomposition Slave

n m

(S): mmZZC, T yj
=1 j=1
n

() D yy=Dpj=1,...,m

m
(). D yy<Xji=1,..n-1

X;: trial decision from master
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Sequence of Investments

lteration | Coal (MW) Gas (MW) Nuclear (MW) Oil (MW)
1 0 0 0 0
2 0 0 0 8735.6
3 0 0 0 18565.1
4 0 14675.8 0 0
5 10673.3 0 0 0
6 0 0 7337.9 3063.1
7 0 1497.7 7337.9 732.2
8 0 1497.7 7337.9 2033.3
9 0 0 8966 1435
10 2851.8 2187.2 5362 0
11 8321 0 0 2080
12 6989.5 4489.5 56.5 0
13 3261 2905 4235 0
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@ A new investment proposal is necessarily made in each
iteration (why?)
@ Greedy behavior

o First iteration: no investment
e Early iterations: technologies with low investment cost

42/42



	Cutting Plane Methods
	Context and Description of Benders Decomposition
	Useful Results
	Statement of Algorithm and Proof of Convergence
	Example: Capacity Expansion Planning

