Cutting Plane Methods Operations Research

Anthony Papavasiliou

2 Context and Description of Benders Decomposition

3 Useful Results

- 4 Statement of Algorithm and Proof of Convergence
- 5 Example: Capacity Expansion Planning

Table of Contents

Outting Plane Methods

2 Context and Description of Benders Decomposition

3 Useful Results

- 4 Statement of Algorithm and Proof of Convergence
- 5 Example: Capacity Expansion Planning

Cutting plane methods: optimization methods which are based on the idea of iteratively refining the objective function or set of feasible constraints of a problem through linear inequalities Kelley's cutting plane algorithm is designed for solving convex non-differentiable optimization problems:

$$egin{aligned} & z^{\star} = \min c^{\mathcal{T}} x + \mathcal{F}(x) \ & ext{s.t. } x \in X \end{aligned}$$

where

- X is a compact convex subset of \mathbb{R}^n
- $F : \mathbb{R}^n \to \mathbb{R}$ is a convex function
- $c \in \mathbb{R}^n$ is a parameter vector

Define

- $L_k : \mathbb{R}^n \to \mathbb{R}$ as lower bounding function of F(x) at iteration k
- Lower bound L_k of z^* at iteration k
- Upper bound U_k of z^* at iteration k

Idea: gradually bound F(x) from below with functions $L_k(x)$

Kelley's Cutting Plane Algorithm

Step 0: Set k = 0, and assume $x_1 \in X$ given. Set $L_0(x) = -\infty$ for all $x \in X$, $U_0 = c^T x_1 + F(x_1)$, and $L_0 = -\infty$

Step 1: Set k = k + 1. Find $a_k \in \mathbb{R}$ and $b_k \in \mathbb{R}^n$ such that

$$egin{aligned} F(x_k) &= a_k + b_k^T x_k \ F(x_k) &\geq a_k + b_k^T x, x \in X \end{aligned}$$

Step 2: Set

$$U_k = \min(U_{k-1}, c^T x_k + F(x_k))$$

and

$$L_k(x) = \max(L_{k-1}(x), a_k + b_k^T x), x \in X$$

Step 3: Compute

$$L_k = \min_{x \in X} c^T x + L_k(x)$$

and denote x_k as the optimal solution of this problem

Step 4: If $U_k - L_k = 0$, stop; else, repeat from step 1

Nomenclature of Cutting Plane Methods

- Benders decomposition: specific method for obtaining the cutting planes when *F*(*x*) is the value function of a second-stage linear program
- L-shaped method: specific instance of Benders decomposition when second-stage linear program is decomposable into a set of scenarios
- Multi-cut L-shaped method: alternative to L-shaped method which generates multiple cutting planes at step 1 of Kelley's method
- Cutting plane methods generalized to bundle methods in non-differentiable convex optimization (commonly used in Lagrange relaxation)

Cutting Plane Methods

2 Context and Description of Benders Decomposition

3 Useful Results

4 Statement of Algorithm and Proof of Convergence

5 Example: Capacity Expansion Planning

When to Use Benders Decomposition

Consider the following optimization problem:

$$z^* = \min c^T x + q^T y$$
$$Ax = b$$
$$Tx + Wy = h$$
$$x, y \ge 0$$

with $x \in \mathbb{R}^{n_1}$, $y \in \mathbb{R}^{n_2}$, $c \in \mathbb{R}^{n_1}$, $b \in \mathbb{R}^{m_1}$, $A \in \mathbb{R}^{m_1 \times n_1}$, $q \in \mathbb{R}^{n_2}$, $h \in \mathbb{R}^{m_2}$, $T \in \mathbb{R}^{m_2 \times n_1}$, $W \in \mathbb{R}^{m_2 \times n_2}$

- This is not (necessarily) a stochastic program
- This is a two-stage program

Context for Benders decomposition:

- entire problem is difficult to solve
- 2 if Tx + Wy = h is ignored, problem is relatively easy
- if x is fixed, problem is relatively easy

Idea of Benders Decomposition

Define value function $V : \mathbb{R}^{n_1} \to \mathbb{R}$

$$(S): V(x) = \min_{y} q^{T} y$$
$$Wy = h - Tx$$
$$y \ge 0$$

Equivalent description of problem

$$\min c^{T} x + V(x)$$
$$Ax = b$$
$$x \in \text{dom } V$$
$$x \ge 0$$

Note: dom $V = \{x : \exists y, Tx + Wy = h, y \ge 0\}$

13/42

Graphical Description of Benders Decomposition

Table of Contents

2 Context and Description of Benders Decomposition

3 Useful Results

Statement of Algorithm and Proof of Convergence

5 Example: Capacity Expansion Planning

The dual of (S) can be expressed as:

$$(D): \max_{\pi} \pi^{T} (h - Tx)$$
$$\pi^{T} W \leq q^{T}$$

<ロ> <同> <同> < 回> < 三> < 三> 三 三

16/42

Note: feasible region of (D) does not depend on x

- *V*: set of extreme points of $\pi^T W \leq q^T$
- *R*: set of extreme rays of $\pi^T W \leq q^T$

 $\pi \in V, \sigma \in R$ do *not* depend on *x*, can be enumerated

- *V*(*x*) is a piecewise linear convex function of *x*
- If π_0 is dual optimal multiplier of (S) given x_0 , then

$$\pi_0^T(h-Tx_0)$$

is a supporting hyperplane of V(x) at x_0

We recall a previous result for the proof

Parametrizing the Right-Hand Side

Define c(u) as optimal value of

 $c(u) = \min f_0(x)$ $f_i(x) \le u_i, i = 1, \dots, m$

where $x \in \text{dom } f_0$ is the convex domain of $f_0(x)$ and f_0, f_i are convex functions

- c(u) is convex
- Suppose strong duality holds and denote λ^{*} as the maximizer of the dual function inf_{x∈dom f₀}(f₀(x) − λ^T(f(x) − u) for λ ≤ 0. Then λ^{*} ∈ ∂c(u).

From previous result:

- V(h Tx) is convex, so V(x) is convex
- $\pi_0 \in \partial V(h Tx_0)$, so $\pi_0^T(h Tx)$ is a supporting hyperplane of V(x) at x_0
- (S) has a finite number of dual optimal multipliers ⇒ finite number of supporting hyperplanes for V(x) ⇒ V(x) is piecewise linear convex

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へぐ 21/42 dom V can be expressed equivalently as follows:

dom
$$V = \{\sigma^T(h - Tx) \leq 0, \sigma \in R\}$$

where $\sigma \in \boldsymbol{R}$ is the set of extreme rays of $\pi^T \boldsymbol{W} \leq \boldsymbol{q}^T$

Proof that dom $V \subseteq \{\sigma^T(h - Tx) \le 0, \sigma \in R\}$:

- Suppose $x \in \text{dom } V$ and $\sigma^T(h Tx) > 0$ for some $\sigma \in R$
- σ is an extreme ray $\Rightarrow \sigma^T W \leq 0$
- Consider any dual feasible vector π₀: π₀ + λσ is feasible for any λ ≥ 0

イロン イロン イヨン イヨン 三日

- Since $\sigma^{T}(h Tx) > 0$, (D) becomes unbounded
- Contradiction with assumption that $x \in \text{dom } V \Rightarrow \sigma^T(h Tx) \le 0$ for all $\sigma \in R$

Proof that $\{\sigma^T(h - Tx) \le 0, \sigma \in R\} \subseteq \text{dom } V$:

- Any ray of π^T W ≤ q^T can be expressed as convex combination of extreme rays
- Therefore, for any ray σ of $\pi^T W \le q^T$ it follows that $\sigma^T (h Tx) \le 0 \Rightarrow (D)$ cannot become unbounded

$$\min c^{T} x + \theta$$

$$Ax = b$$

$$\sigma_{r}^{T} (h - Tx) \leq 0, \sigma_{r} \in R$$

$$\theta \geq \pi_{v}^{T} (h - Tx), \pi_{v} \in V$$

$$x \geq 0$$

<ロ> <四> <四> <四> <三</p>

26/42

 θ : free auxiliary variable

Relax inequalities that define V(x) and dom V:

$$(M): \quad z_k = \min c^T x + \theta$$
$$Ax = b$$
$$\sigma^T (h - Tx) \le 0, \sigma \in R_k \subseteq R$$
$$\theta \ge \pi^T (h - Tx), \pi \in V_k \subseteq V$$
$$x \ge 0$$

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bounds and Exchange of Information

Solution of master problem provides:

- lower bound $z_k \leq z^*$
- candidate solution x_k
- under-estimator of $V(x_k)$, $\theta_k \leq V(x_k)$

Solution of slave problem with input x_k provides:

- upper bound $c^T x_k + q^T y_{k+1} \ge z^*$
- new vertex π_{k+1} or new extreme ray σ_{k+1}

Table of Contents

2 Context and Description of Benders Decomposition

3 Useful Results

4 Statement of Algorithm and Proof of Convergence

5 Example: Capacity Expansion Planning

Benders Decomposition Algorithm

Step 0: Set k = 0, $V_0 = R_0 = \emptyset$. Step 1: Solve (*M*). Store x_k .

• If (M) is feasible, store x_k .

• If (*M*) is infeasible, exit. Problem is infeasible.

Step 2: Solve (S) with x_k as input.

- If (*S*) is infeasible, let $R_{k+1} = R_k \cup \{\sigma_{k+1}\}$. Let k = k + 1 and return to step 1.
- If (*S*) is feasible, let $V_{k+1} = V_k \cup \{\pi_{k+1}\}$
 - If $V_k = V_{k+1}$, terminate with (x_k, y_{k+1}) as optimal solution.
 - Else, let k = k + 1 and return to step 1.

Finite termination since V and R are finite

Denote x_k as solution of (*M*) and use it as input in (*S*)

- Suppose (*S*) is feasible, denote π_{k+1} as optimal vertex. If $\pi_{k+1} \in V_k$ then x_k is optimal.
- Suppose (S) is infeasible, denote σ_{k+1} as extreme ray. Then σ_{k+1} ∉ R_k.

Proof that $\pi_{k+1} \in V_k \Rightarrow x_k$ is optimal

- For any x feasible, c^Tx + V(x) ≥ c^Tx_k + θ_k because (M) is a relaxation of the original problem
- If $\theta_k = V(x_k)$, then x_k is optimal since for any x feasible, $c^T x + V(x) \ge c^T x_k + V(x_k)$
- We already know that $\theta_k \leq V(x_k)$ (first bullet)
- Need to show that $\theta_k \ge V(x_k)$ (next slide)

Proof that $\pi_{k+1} \in V_k \Rightarrow \theta_k \ge V(x_k)$

- We know that $V(x_k) = \pi_{k+1}^T (h Tx_k)$ (why?)
- Since $\theta \ge \pi^T (h Tx), \pi \in V_k$ is enforced in (*M*) at iteration *k*, if $V_{k+1} = V_k$ then $\theta_k \ge \pi_{k+1}^T (h - Tx_k)$

(日) (四) (E) (E) (E)

33/42

Combining the above relationships,

$$heta_k \geq \pi_{k+1}^T (h - T x_k) = V(x_k)$$

Proof that (*S*) infeasible $\Rightarrow \sigma_{k+1} \notin R_k$

- σ_{k+1} is an extreme ray $\Rightarrow \sigma_{k+1}^T (h Tx_k) > 0$
- If σ_{k+1} ∈ R_k, then σ^T_{k+1}(h − Tx_k) ≤ 0 (contradicting the first bullet)
- Therefore, $\sigma_{k+1} \notin R_k$

Table of Contents

Cutting Plane Methods

2 Context and Description of Benders Decomposition

3 Useful Results

- 4 Statement of Algorithm and Proof of Convergence
- 5 Example: Capacity Expansion Planning

Load Duration Curve

Load duration curve is obtained by sorting load time series in descending order

э

36/42

Mathematical Programming Formulation

$$\min_{x,y\geq 0} \sum_{i=1}^{n} (I_i \cdot x_i + \sum_{j=1}^{m} C_i \cdot T_j \cdot y_{ij})$$

s.t.
$$\sum_{i=1}^{n} y_{ij} = D_j, j = 1, \dots, m$$
$$\sum_{j=1}^{m} y_{ij} \le x_i, i = 1, \dots, n-1$$

- *I_i*, *C_i*: fixed/variable cost of technology *i*
- D_j, T_j: height/width of load block j
- y_{ij}: capacity of *i* allocated to *j*
- x_i: capacity of i

Technology	Fuel cost (\$/MWh)	Inv cost (\$/MWh)
Coal	25	16
Gas	80	5
Nuclear	6.5	32
Oil	160	2

	Duration (hours)	Level (MW)
Base load	8760	0-4235
Medium load	7000	4235-7496
Peak load	1500	7496-10401

Benders Decomposition Master

$$(M): \min_{x \ge 0} \sum_{i=1}^{n} I_i \cdot x_i + \theta$$
$$\theta \ge \sum_{j=1}^{m} \lambda_j^v D_j + \sum_{i=1}^{n} \rho_i^v x_i, (\lambda^k, \rho^k) \in V_k$$
$$\theta \ge 0$$

 λ_i^k , ρ_i^k : dual optimal multipliers of slave

Note $\theta \ge 0$

- because slave has has non-negative cost
- necessary for boundedness of master

Benders Decomposition Slave

$$(S): \min_{y \ge 0} \sum_{i=1}^{n} \sum_{j=1}^{m} C_i \cdot T_j \cdot y_{ij}$$
$$(\lambda_j): \sum_{i=1}^{n} y_{ij} = D_j, j = 1, \dots, m$$
$$(\rho_i): \sum_{j=1}^{m} y_{ij} \le \bar{x}_i, i = 1, \dots, n-1$$

 \bar{x}_i : trial decision from master

Iteration	Coal (MW)	Gas (MW)	Nuclear (MW)	Oil (MW)
1	0	0	0	0
2	0	0	0	8735.6
3	0	0	0	18565.1
4	0	14675.8	0	0
5	10673.3	0	0	0
6	0	0	7337.9	3063.1
7	0	1497.7	7337.9	732.2
8	0	1497.7	7337.9	2033.3
9	0	0	8966	1435
10	2851.8	2187.2	5362	0
11	8321	0	0	2080
12	6989.5	4489.5	56.5	0
13	3261	2905	4235	0

41/42

- A new investment proposal is necessarily made in each iteration (why?)
- Greedy behavior
 - First iteration: no investment
 - Early iterations: technologies with low investment cost