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Day-Ahead and Real-Time Opertions

Day-ahead operations

Performed 24-36 hours in advance

Necessary because of delays in starting / moving units

Based on forecasts (of demand, renewable energy ,
system state)

Unit commitment

Real-time operations

Continuously

Economic dispatch

Distinction between day-ahead scheduling and real-time
dispatch is universal across systems
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Flow Chart of Operations
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The Real Thing
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Computational Methods

Unit commitment is a large-scale mixed integer linear program

Until 1960s: dispatch in order of increasing marginal cost

1970s, 1980s: dynamic programming with Lagrangian
relaxation

Past decade: branch and bound solvers
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Total Cost

Denote

VCg(pgt ): variable cost

FCg(ug): fixed cost

TCg(ug): total cost

TCg(ug ,pg) = FCg(ug) +
T∑

t=1

VCg(pgt )

T : scheduling horizon

ugt : indicate whether unit is on or off, with
ug = (ug1, . . . ,ugT ) ∈ {0,1}T

pgt : power production, with pg = (pg1, . . . ,pgT ) ∈ RT

rgt : reserve, with rg = (rg1, . . . , rgT ) ∈ RT

9 / 53



Example

Denote

Sg : startup cost

Kg : minimum load cost

MCg(·): marginal cost function

TCg(ug ,pg) =
T∑

t=1

(Kgugt + Sgvgt +

∫ pgt

0
MCg(x)dx)

vgt : indicator for startup in period t

vgt =

{
1 if ug,t−1 = 0,ugt = 1
0 otherwise
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Generic Unit Commitment Model

(UC) : min
∑
g∈G

TCg(ug ,pg)

hg(pg , rg ,ug) ≤ 0∑
g

pgt = Dt∑
g

rgt = Rt

hg : private operating constraints of unit g

Dt : power demand

Rt : reserve demand
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Initial Conditions

Denote

u0g ∈ {0,1}T0 : initial commitment, T0 periods prior to first
period of scheduling horizon

p0g ∈ RT0 : initial production

How long should T0 be?
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Transitions

Notation:

u indicates on status

v indicates startup

z indicates shutdown

ugt = ug,t−1 + vgt − zgt .

13 / 53



Min Up/Down Times

Red marks: forced states

Blue marks: free choices

What is the min up time? down time?
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Denote

UTg : min up time

DTg : min down time

t∑
τ=t−UTg+1

vgτ ≤ ugt , t ≥ UTg

t∑
τ=t−DTg+1

zgτ ≤ 1− ugt , t ≥ DTg
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Generator Temperature

Temperature of a generator determines how much fuel is
required in order to start it up

Example:

Hot: 200 GJ needed to start 1-16 hours after shut down

Warm: 220 GJ needed to start 17-24 hours after shut down

Cold: 250 GJ needed to start 25+ hours after shut down

Θ = {Hot, Warm, Cold}
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Temperature Dependent Startup

vglt : indicator for startup in temperature state l at period t

Generator can only start up from a single temperature state:

vgt =
∑
l∈Θ

vglt

Temperature state l occurs within Tgl to T̄gl periods after
shutdown:

vglt ≤
t−T̄gl∑

τ=t−Tgl +1

zgτ , t ≥ Tgl
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Startup/Shutdown Profiles

Startup/shutdown profiles: predefined sequence of production
when generators are started up / shut down

Red points: startup profile (restricted)

Blue circles: free dispatch
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Example

Consider a generator with

technical minimum: 120 MW (should be reached as soon
as possible)

ramp rate: 1 MW/min

Startup profile is (60 MW, 120 MW), why?
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Temperature Dependent Startup Profiles

uSU
gt : indicator for startup

uSD
gt : indicator for shutdown

uDISP
gt : indicator for free dispatch

Generator must be in one of three states:

ugt = uSU
gt + uDISP

gt + uSD
gt
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T SU
gl : duration of startup profile (depends on temperature l)

T SD
g : duration of shutdown profile

Determine whether generator is in startup/shutdown:

uSU
gt =

∑
l∈Θ

t∑
τ=t−T SU

gl +1

vglτ , t ≥ max
l∈Θ

T SU
gl

uSD
gt =

t+T SD
g −1∑
τ=t

zgτ , t ≤ T − T SD
g + 1
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Startup/Shutdown Production

PSU
glτ : sequence of production levels for startup profile (note

dependence on temperature l)

PSD
gτ : sequence of production levels for shutdown profile

Production in startup/shutdown profile:

pSU
gt =

∑
l∈Θ

t∑
τ=t−T SU

gl +1

vglτPSU
gl,t−τ+1, t ≥ max

l∈Θ
T SU

gl

pSD
gt =

t+T SD
gl∑

τ=t+1

zgτPSD
g,τ−t , t ≤ T − T SD
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Dispatchable Production

Denote P−g , P+
g as technical minimum/maximum

pgt ≥ pSU
gt + pSD

gt + P−g uDISP
gt

pgt ≤ pSU
gt + pSD

gt + P+
g uDISP

gt

What happens when uDISP
gt = 0? uDISP

gt = 1?
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Ramp Rates

Note: ramp rates may be violated by startup/shutdown profiles
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Denote R+
g , R−g as ramp up/down rate limit

pgt − pg,t−1 ≤ R+
g + MuSU

gt , t ≥ 2

pg,t−1 − pgt ≤ R−g + MuSD
gt , t ≥ 2

What happens when uDISP
gt = 0? uDISP

gt = 1?
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Fixed Costs

Denote

SUCgl : startup cost for temperature l

MLCg : minimum load cost

FC(ug) =
T∑

t=1

(
∑
l∈Θ

SUCglvglt + MLCgugt )

Note: Fuel cost from startup profiles not accounted here
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Variable Costs

Average heat rate (MMBtu/MWh): ratio of total fuel
consumption to total electric power production

Marginal heat rate (MMBtu/MWh): derivative of fuel
consumption with respect to electric power production

Denote MHRg(p) as marginal heat rate curve, FP as fuel price
($/MMBtu):

VC(pgt ) = FP
∫ pgt

0
MHR(x)dx .
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Non-Increasing Marginal Heat Rate

Why does this heat rate curve cause modeling problems?
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Modeling Non-Convex Fuel Cost

Denote:

S: set of segments in heat rate curve

P+
gs: width of each segment

MHRgs: marginal heat rate of each segment

Activate first segment once generator is started up:

ugs1t = ugt

Segment cannot be activated before previous segment is fully
used:

ug,s+1,t ≤
pgst

P+
gs
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Production within each segment:

0 ≤ pgst ≤ P+
gsugst

Total power production:

pgt =
∑
s∈S

pgst

Total variable cost:

VCg(pgt ) = FP
∑
s∈S

MHRgspgst
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Secondary Reserves

Denote upwards/downwards reserve as r2+
gt /r2−gt ≥ 0

Min/max capacity constraints:

pgt − r2−gt ≥ pSU
gt + pSD

gt + P−g uDISP
gt

pgt + r2+
gt ≤ pSU

gt + pSD
gt + P+

g uDISP
gt

Denote upward/downward reserve limits as MR2+
g /MR2−g

r2−gt ≤ MR−g uDISP
gt

r2+
gt ≤ MR+

g uDISP
gt

Denote upward/downward requirements as RR2+
t /RR2−t∑

g∈G

r2−gt ≥ RR2−t ,
∑
g∈G

r2+
gt ≥ RR2+

t
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Tertiary Reserves

Denote r3S
gt ≥ 0 as spinning reserve (on-line tertiary)

Max capacity:

pgt + r2+
gt + r3S

gt ≤ pSU
gt + pSD

gt + P+
g uDISP

gt

Denote r3NS
gt ≥ 0 as non-spinning reserve (off-line tertiary)

Max capacity:
r3NS

gt ≤ P+
g (1− ugt )
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Denote MR3g as tertiary reserve limit:

r3S
gt + r3NS

gt ≤ MR3g

Denote aggregate reserve requirements as RR3t :∑
g∈G

(r3S
gt + r3NS

gt ) ≥ RR3t
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Reserve Requirements for Renewables

Unit commitment model can quantify

Reserve requirements

Operating cost

Utilization of resources (conventional, renewable)

Policy support: we can quantify trade-offs of renewable energy

Uncertainty (-)

Free fuel cost (+)

The big question is: how many reserves do we need? Different
models provide different answers...
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Stochastic Unit Commitment

Two-stage formulation:

1 First stage: commitment

2 Revelation of uncertainty: component (generators, lines)
failures, forecast errors (renewables, demand)

3 Second stage: generator/load dispatch
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Setup

Conventional units: controllable, costly

Renewable generators: zero cost, unpredictable

Trade-off

Too many reserves⇒ high startup/min load costs,
renewable energy curtailment

Too few reserves⇒ load shedding
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Criticisms

Model size

Detailed model of uncertainty is needed

Scenario selection is crucial and non-trivial
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Security Constrained Unit Commitment

Objective: minimize cost under normal conditions

Each ‘scenario’ corresponds to the outage of a single
component

All demand must be satisfied

Renewable supply replaced by forecast

In line with approach of system operator to unit
commitment (+)

Large-scale problem (-)

Conservative (-)
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Varieties of Day-Ahead Market Designs

CentralizedDecentralized

Real timeDay aheadYears ahead

We will analyze two variations:

Exchanges (more decentralized)

Pools (more centralized)
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Role of Day-Ahead Markets

Day-ahead markets are forward markets for power

Two-settlement system: organization of (1) day-ahead
markets as forward markets for trading power, followed by (2) a
real-time market for settling imbalances
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Two-Settlement System for Generators

Suppose generator sells Q1 at P1 in day-ahead market and
produces Q0 in real time:

Receive P1 ·Q1 from day-ahead market

If Q0 > Q1, receive P0 for the extra power Q0 −Q1

If Q0 < Q1, pay P0 for the shortage Q1 −Q0

Generator is paid

R = P1 ·Q1 + P0(Q0 −Q1)
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Two-Settlement System for Loads

Suppose load buys Q1 at P1 in day-ahead market and
consumes Q0 in real time:

Pay P1 ·Q1 from day-ahead market

If Q0 > Q1, pay P0 for the extra power Q0 −Q1

If Q0 < Q1, receive P0 for the leftover Q1 −Q0

Load pays
R = P1 ·Q1 + P0(Q0 −Q1)
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A System Without a Market-Clearing Price

Consider the following market:

Inelastic demand: 360 MW

Three identical generators
Capacity: 200 MW
Startup cost: 1000 $
Marginal cost: 5 $/MWh

Note: there is no price that exactly equilibrates supply and
demand (why?)
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Exchanges

Exchanges: uniform price auctions with simple bidding rules

Bidders internalize fixed costs in their bids

Less complicated rules (hence less gaming)

More complicated strategy needed by generators (truthful
bidding is suboptimal)
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Example

Recall previous market:

Inelastic demand: 360 MW

Three identical generators
Capacity: 200 MW
Startup cost: 1000 $
Marginal cost: 5 $/MWh

Bid below 10 $/MWh results in losses if in the money

Bid at 10 $/MWh results in losses if in the money and
generator produces 160 MW (instead of 200 MW)

Pure strategy Nash equilibrium: bid at 11.25 $/MWh

What happened? Generators internalized fixed costs in bids
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Pools

Pools are multi-part auctions where producers submit their
costs and operating constraints, and different producers
effectively receive different prices due to uplift payments

Complex auction rules⇒ susceptible to gaming

Simple for suppliers, complex for market operator

Suppliers are paid differently because of uplift payments
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Supplier bids. Suppliers submit all their information (fuel cost,
startup cost, min load cost, ramp rates, min up/down times, etc)
Consumer bids. Consumers submit decreasing bids
Obligations and payoffs. Market operator solves (UC), and

1 determines a price for energy /reserves

2 suppliers/consumers obliged to follow (UC) solution

3 Uplift payments: payments from market operator to
suppliers if their instructions are not profit-maximizing

Different market designs for pools, depending on rules for
setting price
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Setting Prices: Option 1 (O’Neill, 2001)

Get price as λt from following problem:

min
∑
g∈G

TCg(ug ,pg)

hg(pg , rg ,ug) ≤ 0

(λt ) :
∑

g

pgt = Dt

ugt = u?gt

where u?gt is optimal solution of (UC)

Motivation: unit commitment provides ’price’ information after
fixing integer variables
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Setting Prices: Option 2 (Hogan, 2003)

Get price λt from following problem:

max
λ

φ(λ),

where

φ(λ) = min
p,r ,u

(
∑
g∈G

TCg(ug ,pg)−
∑

t

λt (
∑
g∈G

pgt − Dt ))

s.t. hg(pg , rg ,ug) ≤ 0

Motivation: find prices that minimize uplift payments of market
operator
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Example (Option 1, O’Neill)

Recall previous example, suppose suppliers bid truthfully:

Inelastic demand: 360 MW
Three identical generators

Capacity: 200 MW
Startup cost: 1000 $
Marginal cost: 5 $/MWh

Energy price determined from following problem (why?):

min 5p1 + 5p2

(λ) : p1 + p2 = 360

0 ≤ pi ≤ 200, i ∈ {1,2}

Price: 5 $/MWh

Uplift: 2000 $ (why?)
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Example (Option 2, Hogan)

Dual function:

φ(λ) = min
p,u

5p1 + 5p2 − λ(p1 + p2 − 360)

s.t. 0 ≤ pi ≤ 200ui

ui ∈ {0,1}

Maximizer of φ(·) equals 5 (why?)

Price: 5 $/MWh

Uplift: 2000 $

Note: same price as option 1, in general not the case
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