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Incidence Matrix

Consider a graph G = (N,E), where N is the set of nodes and
E is the set of edges

The incidence matrix of the graph is defined as
A = (Aij), i , j ∈ N, where

Aij =

{
1, if (i , j) ∈ E ,
0, otherwise
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Degree Matrix

Consider a graph G = (N,E)

The degree matrix is defined as D = (Dij), i , j ∈ N, where

Dij =

{
di , if (i = j),
0, otherwise

di is the degree of node i , which is the number of edges that
are incident to the node

For weighted graphs the degree generalizes to the sum of the
weights of the edges that are indecent to the node
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Graph Laplacian

Consider a graph G = (N,E), where A is its incidence matrix
and D is its degree matrix

The Laplacian of the graph is then defined as

L = D − A
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Example: Three-Node Graph

Incidence matrix:

A =

 0 1 1
1 0 1
1 1 0


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Example: Three-Node Graph

Degree matrix:

D =

 2 0 0
0 2 0
0 0 2


Laplacian:

L =

 2 −1 −1
−1 2 −1
−1 −1 2


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Laplacian Matrix is Positive Semi-Definite

A matrix A ∈ Rn×n is positive semidefinite if, for any non-zero
vector f ∈ Rn, f T Af ≥ 0
Consider a graph G = (N,E), and pick any vector f ∈ R|N|

The i-th component of Lf is (Lf )i =
∑

j∈N:(i,j)∈E(fi − fj)

f T Lf =
∑
i∈N

fi
∑

j∈N:(i,j)∈E

(fi − fj)

=
∑

(i,j)∈E

fi(fi − fj) +
∑

(i,j)∈E

fj(fj − fi)

=
∑

(i,j)∈E

(fi(fi − fj)− fj(fi − fj))

=
∑

(i,j)∈E

(fi − fj)2 ≥ 0
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Example: Three-Node Graph

Consider any non-zero vector f = (f1, f2, f3):

Lf =

 2f1 − f2 − f3
2f2 − f1 − f3
2f3 − f1 − f2

 =

 (f1 − f2) + (f1 − f3)
(f2 − f1) + (f2 − f3)
(f3 − f1) + (f3 − f2)

 .
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Example: Three-Node Graph

Left-multiplying by f ,

f T Lf = f1(f1 − f2) + f1(f1 − f3)

+f2(f2 − f1) + f2(f2 − f3)

+f3(f3 − f1) + f3(f3 − f2)

= (f1 − f2)2 + (f2 − f3)2 + (f1 − f3)2
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Graph Laplacian Theorem

The multiplicity of the eigenvalue λ = 0 in the Laplacian of a
graph is equal to the number of connected components of the
graph
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Example: Three-Node Graph

Laplacian:

L =

 2 −1 −1
−1 2 −1
−1 −1 2


Eigenvalues of L: λ1 = 0, λ2 = 3, λ3 = 3

Since the graph is connected, it has a single eigenvalue equal
to zero
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Circuits

Electric circuits consist of

passive elements that act as carriers of electric power
(transmission lines, transformers)

active elements that generate or consume electric power
(generators, loads)

State of a circuit can be described by:

current along every branch

voltage difference between each node of the circuit and a
reference point called ground

Once we know the state of the system, we know everything
about the circuit
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Ohm’s Law

Passive electric elements are characterized by an admittance,
Y , which is determined by their electrical characteristics

Denote V as the voltage applied along the terminals of a
passive element, and I as the current flowing across it. Ohm’s
law requires that:

I = Y · V
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Complex Representation of a Sinusoidal Signal

Phase angle

Amplitude

Signal at t = 15ms

Signal at t = 10ms

Signal at t = 5ms

Signal at t = 0
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Alternating Current (AC) Electric Power Systems

AC power systems have voltage and current that fluctuate
sinusoidally (50 Hz in Europe, 60 Hz in USA)

Sinusoidal signals can be described as complex number:

Amplitude of the signal: magnitude of the vector

Phase angle: angle of the complex number with respect to
the horizontal axis

Example: consider a current signal I = (3 + 4 · i) Ampere

Magnitude: 5 Ampere

Phase angle: 36.9 degrees
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Example: Voltage and Current of a Passive Element

Consider applying a voltage of 230 V across a passive element
with Y = 0.01− 0.01 · i

By Ohm’s law:

I = V · Y = 230 · (0.01− 0.01 · i) = 2.3− 2.3 · i

Amplitude of current:
√

2.32 + 2.32 = 3.25 Ampere

Phase difference between current and voltage:
arctan(−2.3

2.3 ) = −45◦

Current lags voltage by 45
360 of a full cycle (20ms), hence current

peaks 2.5 ms after voltage
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Example: Voltage and Current of a Passive Element
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Power Flow

Consider a branch (m,n) of a circuit, Vmn the voltage applied
across the branch, Imn the current flowing across an element

We can define the (i) apparent power Smn, (ii) real power Pmn,
and (iii) reactive power Qmn consumed on the line as follows:

Smn = Pmn + Qmn · i = Vmn · I?mn
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Resistors, Inductors, Capacitors

Classification of passive electrical equipment based on
admittance Y = G + Bi , where G is the conductance, and B is
the susceptance:

Resistors: positive conductance (G > 0,B = 0), consume
real power (Pmn > 0)

Inductors: negative susceptance (B < 0,G = 0), consume
reactive power (Qmn > 0)

Capacitors: positive susceptance (G = 0,B > 0), produce
reactive power

Typically, transmission lines and transformers are reactive (i.e.
B < 0) and slightly resistive (i.e. G > 0 but G >> B)
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Kirchoff’s Laws

Kirchoff’s current law: total amount of current flowing into a
node equals the total amount of current flowing out of a node

Kirchoff’s voltage law: accumulated voltage change across
any loop of an electrical circuit equals zero
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N-Port Model of Circuit

I1

I2

IN−1

IN

V1

V2

VN−1

VN

1

2

N-1

N

0

...

Sm = Vm · I?m = Pm + Qm · i
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Performance Equations in Admittance Form

Denote bus currents as Ibus = (I1, Ii , . . . , IN)T , bus voltages as
Vbus = (V1,V2, . . . ,VN)

T and Ybus

Define the admittance matrix of the network:

Ymn is the negative of the admittance between bus m and
bus n for m 6= n

Ymm is the sum of the admittance between node m and the
ground plus the admittance between node m and all of its
adjacent nodes for m = n

Performance equations in admittance form:

Ibus = Ybus · Vbus
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Power Flow Equations

Kirchhoff’s current law at the m-th bus:

Im =
N∑

n=1

Ymn · Vn

Conjugating this equation, we get

Sm = Vm · I?m = Vm ·
N∑

n=1

Y ?
mn · V ?

n

Separating into real and imaginary parts, we get power flow
equations

Pm = Re(Vm · I?m) = Re(Vm ·
N∑

n=1

Y ?
mn · V ?

n ),

Qm = Im(Vm · I?m) = Im(Vm ·
N∑

n=1

Y ?
mn · V ?

n )
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Power Flow Equations in Polar Coordinates

In polar coordinates,

Pm = |Vm| ·
N∑

n=1

|Vn| · (Gmn · cos(θmn) + Bmn · sin(θmn)),

Qm = |Vm| ·
N∑

n=1

|Vn| · (Gmn · sin(θmn)− Bmn · cos(θmn)),

where Ymn = Gmn + Bmn · i and θmn is the phase angle
difference of voltages Vm and Vn
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Linearized Power Flow Equations

Consider the following approximations:

Line resistance is negligible: Gmn = 0

Phase angles across branches θmn = θm − θn are
sufficiently small: sin(θmn) ' θmn and cos(θmn) ' 1

Voltage magnitude on each bus is nominal: |Vm| ' 1

This results in the linearized power flow equations
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Ignoring the Ground Node

When a network has no passive element connected to the
ground node, the graph of the system can be simplified by
ignoring the ground node

In this case, an N + 1-node network is referred to as an
N-node network

Recall that a generator cannot be injecting power into the
ground node
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Example

66 MW

33 MW

33 MW

100 MW

100 MW

∼ 3

210

Figure: A 4-node network with no passive element connected to
ground can be represented as a 3-node network by ignoring the
ground node.
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Linearized Power Flow Equations

Linearization of power flow equations implies

Pm =
N∑

n=1

Bmn(θm − θn)

Rewrite in terms of reactance Xmn = B−1
mn :

Pm =
N∑

n=1,n 6=m

1
Xmn

θm −
N∑

n=1,n 6=m

1
Xmn

θn
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Node-Based Direct Current Power Flow Equations

Denote T = (Tmn),m,n ∈ {1, . . . ,N} − {h}, where h is the hub
node and T is an N − 1× N − 1 matrix whose elements are

Tmn =


− 1

Xmn
(m,n) ∈ A,m 6= n

N∑
n′=1,n′ 6=m

1
Xmn′

m = n

0 (m,n) /∈ A

where A is the set of arcs in the network
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Node-Based Direct Current Power Flow Equations

Compactly:
P = Tθ

where P = (Pm),m ∈ {1, . . . ,N} − {h} and
θ = (θm),m ∈ {1, . . . ,N} − {h}

Adding conservation of energy,

Ph = −
∑

n∈{1,...,N}−{h}

Pn

we have the node-based direct current power flow
equations
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Observations

Important observation: Dependence of power injections,
Pm, to bus angles, θm, described by a matrix which is the
weighted Laplacian of the graph of the electric network,
where the weights on the lines are given by Bmn

From graph Laplacian theorem, if the graph is connected,
then the Laplacian has rank N − 1

Conclusion: fixing the phase angle of the hub node, power
injections uniquely determine the remaining phase angles

Node-based equations because power flows are
expressed as a function of nodal phase angle differences

Lossless DC power flow model: neglects thermal losses on
lines, since it assumes that the resistance of the passive
elements is zero
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Line Flow as a Function of Bus Angles

Proposition: Power flow on line (m,n) is given as

Pmn =
θm − θn

Xmn
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Power Transfer Distribution Factors

Given a line k and a bus n, the power transfer distribution
factor (PTDF) is the amount of power flow induced on line k by
a transfer of power from bus n to the hub node

Recall: the value of a PTDF is therefore dependent on the
choice of hub node
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Computing PTDFs

Define the matrix M as M = (Mkn), k ∈ E ,n ∈ N − {h} where

Mkn =


1

Xk
, if k = (n, ·),n 6= h,

− 1
Xk
, if k = (·,n),n 6= h,

0 otherwise.

By the definition of M, and from the previous proposition

PL = Mθ,

where PL is the vector of power flows along the lines of the
network
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Computing PTDFs

From the node-based power flow equations,

PL = MT−1P,

where P = (Pn),n ∈ {1, . . . ,N} − {h} is an injection of power
from bus n to the hub node

The PTDF of bus n on line k (denoted as Fkn) is obtained as:

Fkn = M ′k (T
−1)n,

where Mk is the k -th row of M, and (T−1)n is the n-th column of
the matrix T−1
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Example: 4-Bus Network

1.5 3

21

2.5

0.5

0.250.2
3

2

1

0
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Example: 4-Bus Network

Problem: Compute the PTDF from bus 1 to line 2-3 when 0 is
the hub node

Solution:
Start by computing T matrix:

T =


1
1 + 1

1.5 −1
1 0

−1
1

1
1 + 1

2.5 + 1
2 −1

2

0 −1
2

1
2 + 1

3


Invert T :

T−1 =

 0.96 0.6 0.36
0.6 1.0 0.6

0.36 0.6 1.56


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For power injection P = (0.2,0.5,−0.25)T , bus angles are

θ = T−1P =

 0.96 0.6 0.36
0.6 1.0 0.6

0.36 0.6 1.56


 0.2

0.5
−0.25

 =

 0.402
0.470
−0.018


The power flow on each line is

P12 =
θ1 − θ2

X12
=

0.402− 0.47
1

= −0.068,

P10 =
θ1 − θ0

X10
=

0.402− 0
1.5

= 0.268,

P23 =
θ2 − θ3

X23
=

0.47− (−0.018)
2

= 0.244,

P20 =
θ2 − θ0

X20
=

0.47− 0
2.5

= 0.188,

P30 =
θ3 − θ0

X30
=
−0.018− 0

3
= −0.006.
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The matrix M that determines line flows as a function of bus
angles, PL = Mθ, is

M =


0− 1 − 1

1.5 0 0
1− 2 1

1 −1
1 0

2− 3 0 1
2 −1

2

0− 2 0 − 1
2.5 0

0− 3 0 0 −1
3



PTDF of line (2,3) for bus 1 is

F2−3,1 = M2−3(T−1)1 = (0,0.5,−0.5) · (0.96,0.6,0.36)T = 0.12

45 / 48



Example: Symmetric 3-Node Network

3

21

Denote X as the reactance of each line

Problem: Compute the PTDF matrix of the network when node
3 is the hub node.
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Example: Symmetric 3-Node Network

Compute matrix T :

T =

[
1
X + 1

X − 1
X

− 1
X

1
X + 1

X

]
=

1
X

[
2 −1
−1 2

]
.

Invert matrix T :

T−1 = X

[
0.667 0.333
0.333 0.667

]

Compute matrix M:

M =

 1− 2 1
X − 1

X

2− 3 0 1
X

1− 3 1
X 0


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Compute PTDFs:

F1−2,1 = (
1
X
,− 1

X
) · (0.667X ,0.333X )T = 0.333,

F1−3,1 = (
1
X
,0) · (0.667X ,0.333X )T = 0.667,

F2−3,1 = (0,
1
X
) · (0.667X ,0.333X )T = 0.333,

F1−2,2 = (
1
X
,− 1

X
) · (0.333X ,0.667X )T = −0.333,

F1−3,2 = (
1
X
,0) · (0.333X ,0.667X )T = 0.333,

F2−3,2 = (0,
1
X
) · (0.333X ,0.667X )T = 0.667.

Physical intuition: current splits in a way which is inversely
proportional to reactance
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