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Lagrangian Function

Standard form problem (not necessarily convex):

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . ,p

x ∈ Rn, domain D, optimal value p?

Lagrangian function: L : Rn × Rm × Rp → R,
dom L = D × Rm × Rp:

L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi(x) +
p∑

i=1

νihi(x)

Weighted sum of the objective and constraint functions
λi is the Lagrange multiplier associated with fi(x) ≤ 0
νi is the Lagrange multiplier associated with the equality
constraint hi(x) = 0
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Dual Function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D
L(x , λ, ν)

= inf
x∈D

(f0(x) +
m∑

i=1

λi fi(x) +
p∑

i=1

νihi(x))

g is concave, can be −∞ for some λ, ν
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Dual Function is a Lower Bound

If λ ≥ 0 then g(λ, ν) ≤ p?

Proof: If x̃ is feasible and λ ≥ 0 then

f0(x̃) ≥ L(x̃ , λ, ν) ≥ inf
x∈D

L(x , λ, ν) = g(λ, ν).

Minimizing over all feasible x̃ gives p? ≥ g(λ, ν)

6 / 43



Dual Function is Concave

Consider any (λ1, ν1), (λ2, ν2) and α ∈ [0,1]:

g(αλ1 + (1− α)λ2, αν1 + (1− α)ν2)

= inf
x∈dom f0

(f0(x) +
m∑

i=1

(αλ1,i fi(x) + (1− α)λ2,i fi(x))

+

p∑
i=1

(αν1,ihi(x) + (1− α)ν2,ihi(x)))

≥ α inf
x∈dom f0

(f0(x) +
m∑

i=1

λ1,i fi(x) +
p∑

i=1

ν1,ihi(x))

+(1− α) inf
x∈dom f0

(f0(x) +
m∑

i=1

λ2,i fi(x) +
p∑

i=1

ν2,ihi(x))

= αg(λ1, ν1) + (1− α)g(λ2, ν2)
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Agent Coordination

Consider set of agents G with private cost fg(xg), private
constraints h2g(xg) ≤ 0

min
∑
g∈G

fg(xg)

s.t.
∑
g∈G

h1g(xg) = 0

h2g(xg) ≤ 0

Relax coordination constraints
∑

g∈G h1g(xg) = 0:

L(x , λ) =
∑
g∈G

(fg(pg) + λT h1g(xg))

g(λ) =
∑
g∈G

inf
h2g(xg)≤0

(fg(pg) + λT h1g(xg))
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The Dual Problem

Lagrange dual problem:

max g(λ, ν)

s.t. λ ≥ 0

Finds best lower bound on p? from Lagrangian dual
function

Convex optimization problem with optimal value d?

λ, ν are dual feasible if λ ≥ 0, (λ, ν) ∈ dom g
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Weak and Strong Duality

Weak duality: d? ≤ p?

Always holds (for convex and non-convex problems)

Can be used for finding non-trivial bounds to difficult
problems

Strong duality: p? = d?

Does not hold in general

Usually holds for convex problems

Conditions that guarantee strong duality in convex
problems are called constraint qualifications
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Linear Programming Duality Mnemonic Table

Primal Minimize Maximize Dual
Constraints ≥ bi ≥ 0 Variables

≤ bi ≤ 0
= bi Free

Variables ≥ 0 ≤ cj Constraints
≤ 0 ≥ cj

Free = cj

Prove the mnemonic table using Lagrangian relaxation
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Example: Dual Problem of Unit Commitment

Satisfy demand of 200 MW using the following technologies:

Generator Activation Marg. cost Capacity
cost ($/h) ($/MWh) (MW)

Cheap 500 0 20
Moderate 1000 10 100
Expensive 2000 80 100

13 / 43



Example: Dual Problem of Unit Commitment

Introduce the following variables:

pi : power production of unit i

ui (binary): indicator variable for activation of unit i

min 500 · u1 + 1000 · u2 + 10 · p2 + 2000 · u3 + 80 · p3

(λ) : p1 + p2 + p3 = 200 (1)

0 ≤ p1 ≤ 20 · u1

0 ≤ p2 ≤ 100 · u2

0 ≤ p3 ≤ 100 · u3

ui ∈ {0,1}

Which constraint makes generator decisions depend on each
other?
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Example: Dual Problem of Unit Commitment

Dual function obtained by relaxing constraint (1):

g(λ) = min 500 · u1 + 1000 · u2 + 10 · p2 + 2000 · u3 + 80 · p3

−λ · (p1 + p2 + p3)

p1 ≤ 20 · u1,p2 ≤ 100 · u2,p3 ≤ 100 · u3

pi ,≥ 0,ui ∈ {0,1}

Thus,
g(λ) = g1(λ) + g2(λ) + g3(λ),

where

g1(λ) = min
u1∈{0,1}

{500 · u1 − λ · p1,0 ≤ p1 ≤ 20 · u1}

g2(λ) = min
u2∈{0,1}

{1000 · u2 + (10− λ) · p2,0 ≤ p2 ≤ 100 · u2}

g3(λ) = min
u3∈{0,1}

{2000 · u3 + (80− λ) · p3,0 ≤ p3 ≤ 100 · u3}
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Example: Dual Problem of Unit Commitment

Computing g1(λ) (similarly for g2(λ),g3(λ)):

λ ≥ 25⇒ u?
1 = 1, p?

1 = 20

λ < 25⇒ u? = 0, p? = 0

g1(λ) =

{
0, λ ≤ 25

500− 20 · λ, λ > 25

Finally:

g(λ) =


0, λ ≤ 20

2000− 100 · λ, 20 < λ ≤ 25
2500− 120 · λ, 25 < λ ≤ 100
12500− 220 · λ, 100 < λ
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Dual Problem of Unit Commitment

Sanity check: g(λ) is concave

Primal optimal solution: u? = (0,1,1) and
p? = (0,100,100)⇒ p? = 12000
d? = 0 < p? ⇒ strong duality does not hold
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Complementary Slackness

If strong duality holds, x? primal optimal, λ?, ν? dual optimal

f0(x?) = g(λ?, ν?) = inf
x
(f0(x) +

m∑
i=1

λ?i fi(x) +
p∑

i=1

ν?i hi(x))

≤ f0(x?) +
m∑

i=1

λ?i fi(x?) +

p∑
i=1

ν?i hi(x?)

≤ f0(x?)

Therefore, the two inequalities above hold with equality and

x? minimizes L(x , λ?, ν?)
λ?i fi(x?) = 0 for i = 1, . . . ,m

This is known as complementary slackness:

λ?i > 0⇒ fi(x?) = 0 fi(x?) < 0⇒ λ?i = 0
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KKT Conditions

KKT conditions for a problem with differentiable fi ,hi :

Primal constraints: fi(x) ≤ 0, i = 1, . . . ,m,
hi(x) = 0, i = 1, . . . ,p

Dual constraints: λ ≥ 0

Complementary slackness: λi fi(x) = 0, i = 1, . . . ,m

Gradient of the Lagrangian function with respect to x
vanishes:

∇f0(x) +
m∑

i=1

λi∇fi(x) +
p∑

i=1

νi∇hi(x) = 0

From previous slide, if strong duality holds and x , λ, ν are
optimal, then they must satisfy the KKT conditions

20 / 43



KKT Conditions for Convex Problem

Strong duality usually holds for convex problems (but not
always)

Conditions that ensure strong duality are called constraint
qualifications

If (i) constraints of an optimization problem are all linear
equalities inequalities and (ii) and dom f0 is open, then
strong duality holds.
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KKT Conditions of Maximization with Linear Constraints

Consider a maximization problem with linear constraints:

max f (x , y)

Ax + By ≤ b, (λ)

Cx + Dy = d , (µ)

x ≥ 0, (λ2)

Then the KKT conditions have the following form:

Cx − d = 0

0 ≤ λ ⊥ Ax − b ≤ 0

0 ≤ x ⊥ λT A + µT C −∇x f (x , y)T ≥ 0

λT B + µT D −∇y f (x , y)T = 0
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Example: KKT Conditions for Dispatch Problem

Consider previous example, without activation costs

Generator Marg. cost Capacity
($/MWh) (MW)

Cheap 0 20
Moderate 10 100
Expensive 80 100

min 10 · p2 + 80 · p3

(λ) : p1 + p2 + p3 = 200

(µ1) : p1 ≤ 20

(µ2) : p2 ≤ 100

(µ3) : p3 ≤ 100

pi ≥ 0
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Example: KKT Conditions for Dispatch Problem

KKT conditions:
Primal equality constraint
Primal inequality constraint ⊥ complementary
non-negative dual variable
Primal non-negative variable ⊥ dual inequality constraint

p1 + p2 + p3 = 200 (2)

0 ≤ µ1 ⊥ 20− p1 ≥ 0 (3)

0 ≤ µ2 ⊥ 100− p2 ≥ 0 (4)

0 ≤ µ3 ⊥ 100− p3 ≥ 0 (5)

0 ≤ p1 ⊥ λ+ µ1 ≥ 0 (6)

0 ≤ p2 ⊥ 10 + λ+ µ2 ≥ 0 (7)

0 ≤ p3 ⊥ 80 + λ+ µ3 ≥ 0 (8)
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Example: KKT Conditions for Dispatch Problem

p1 + p2 = p3 = 200⇔ −p1 − p2 − p3 = −200
Therefore, three last conditions can be replaced by:

0 ≤ p1 ⊥ −λ+ µ1 ≥ 0 (9)

0 ≤ p2 ⊥ 10− λ+ µ2 ≥ 0 (10)

0 ≤ p3 ⊥ 80− λ+ µ3 ≥ 0 (11)

Easy to see that (p?)T = (20,100,80) is primal optimal

Claim: λ? = 80 and (µ?)T = (80,70,0) are dual optimal

Proof: verify that p?, λ? and µ? satisfy equations (2) - (5)
and (9) - (11)
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KKT Conditions for Non-Differentiable Optimization

What if f0, fi ,hi are convex but non-differentiable?

If strong duality holds,

fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . ,p

λ ≥ 0

λi fi(x) = 0, i = 1, . . . ,m

Subgradient of the Lagrangian function with respect to x
vanishes:

∂f0(x) +
m∑

i=1

λi∂fi(x) +
p∑

i=1

νi∂hi(x) = 0

where ∂f (x) denotes a subgradient of f at x
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Subgradients

Consider a function g, π is a subgradient of g at u if

g(w) ≥ g(u) + πT (w − u) for all w

Subgradients generalize gradients for non-differentiable
functions
Subdifferential ∂g(u): set of all subgradients at u

Subgradients are useful for

generalizing KKT conditions to non-differentiable
optimization problems

deriving sensitivity results
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Geometric Interpretation of Subgradeints

Subgradient determines linear under-estimator of a function

π1: unique subgradient at u1

π2 and π3: both subgradients at u2
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Subgradient Calculus

Suppose g is convex, then:

∂g(u) = {∇g(u)} if g is differentiable at u

Conversely, if ∂g(u) = {π}, then g is differentiable at u and
π = ∇g(u)

∂(ag) = a∂g.

∂(g1 + g2) = ∂g1 + ∂g2, where the right hand side
corresponds to addition of sets

If f (u) = g(Au + b), then ∂f (u) = AT∂g(Au + b)

If g = maxi=1,...,m gi , then

∂g(u) = Co(∪{∂gi(u)|gi(u) = g(u)}),

where Co(·) is the convex hull
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Example: Subgradient Calculus

Consider the following function:

g(u) = max{g1(u),g2(u),g3(u),g4(u)}

where

g1(u) = 0,

g2(u) = 100 · u − 2000,

g3(u) = 120 · u − 2500,

g4(u) = 220 · u − 12500.

At u = 25, g2(u) and g3(u) are the only active inequalities

According to the last result of the previous slide,
∂g(25) = [100,120]
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Example: Subgradient Calculus

Figure: The subdifferential of g at u = 25 is ∂g(25) = [100,120] since
g2 and g3 are the only active constraints.
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Sensitivity Result

Define c(u) as the optimal value of the following mathematical
program:

c(u) = min f0(x)

fi(x) ≤ ui , i = 1, . . . ,m

x ∈ dom f0

and suppose that dom f0 is a convex set and and f0, fi are
convex functions

Then,

c(u) is a convex function

If strong duality holds and λ? maximizes the dual function
infx∈dom f0(f0(x)− λ

T (f (x)− u)) for λ ≤ 0, then λ? ∈ ∂c(u)
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If c(u) is differentiable at a certain point u, then for a given
constraint i :

λi =
∂c(u)
∂ui

Conclusion: λi is equal to the sensitivity of the objective
function c(u) to a marginal change in the right-hand-side of the
constraint corresponding to λi
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Example: Convexity of c(u)

Generator Marg. cost Capacity
cost ($/MWh) (MW)

Cheap 0 20
Moderate 10 100
Expensive 80 100

Denote u as the capacity of generator 1

Generally, generator 1 will be used to the greatest possible
extent, followed by generator 2, followed by generator 3

For 0 ≤ u ≤ 100, c(u) = 10 · 1000 + 80 · (100− u)
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Example: Convexity of c(u)

Following same reasoning for u ≥ 100:

c(u) =


9000− 80 · u, 0 ≤ u < 100
2000− 10 · u, 100 ≤ u < 200

0, 200 ≤ u
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Example: Sensitivity

Recall the solution of the KKT conditions (equations (2) - ((5)
and (9) - (11)):

(p?)T = (20,100,80), λ? = 80, (µ?)T = (80,70,0)

Sensitivity interpretation of λ?:
Right-hand-side of p1 + p2 + p3 = 200, increases by one unit⇒
generator 3 increases output by 1 unit⇒ additional cost of 80 $
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Example: Sensitivity

KKT conditions can also be expressed using equations (2) - (8)

Solution of the KKT system is

(p?)T = (20,100,80), λ? = −80, (µ?)T = (80,70,0)

Note the change in the sign of λ?!
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Non-Uniqueness of KKT Conditions

1 The KKT conditions of a problem depend on how we
define the Lagrangian function

2 The sign of dual multipliers depends on the KKT conditions
(therefore, how we define the Lagrangian function)

3 The sensitivity interpretation of dual multipliers depends on
the KKT conditions (therefore, how we define the
Lagrangian function)

4 Different software interprets user syntax differently!
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Dual Multipliers in AMPL

In order to be able to anticipate the sign of multipliers that
AMPL will assign to constraints, note that:

A constraint of the form f1(x) ≤,=,≥ f2(x) is equivalently
expressed as f1(x)− f2(x) ≤,=,≥ 0,

the constraints are relaxed by subtracting their product with
their corresponding multiplier from the Lagrangian function,

the sign of the dual multiplier is such that the Lagrangian
function provides a bound to the optimization problem,

the primal-dual optimal pair is such that the KKT conditions
corresponding to this Lagrangian function are satisfied.

In this way, the dual multipliers reported by AMPL can
always be interpreted as sensitivities.
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Example

{min x + 2y s.t. 0 ≤ x , (λ1), x ≤ 2, (λ2), y = 1, (µ)}

Objective function f (x , y) = x + 2y , inequality constraints
f1(x , y) = −x ≤ 0 (i.e., a ≤ constraint), f2(x , y) = x − 2,
h(x , y) = y − 1

AMPL Lagrangian:
L(x , y) = (x + 2y)− λ1(−x)− λ2(x − 2)− µ(y − 1)
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AMPL KKT Conditions

KKT conditions:

Primal feasibility: g1(x , y) ≤ 0, g2(x , y) ≤ 0, h(x , y) = 0

Dual feasibility: λ1 ≤ 0, λ2 ≤ 0

Complementarity: λ1 ⊥ g1(x , y), λ2 ⊥ g2(x , y)

Stationarity:

∇f (x , y)− λ1∇g1(x , y)− λ2∇g2(x , y)− µ∇h(x , y) = 0

Solution: x = 0, y = 1, λ1 = −1, λ2 = 0, µ = 2

43 / 43


	Lagrange Dual Problem
	Weak and Strong Duality
	Optimality Conditions
	Sensitivity
	Dual Multipliers in AMPL

