
Demand Response
Quantitative Energy Economics

Anthony Papavasiliou

1 / 31



Contents

1 Time of Use Pricing

2 Priority Service Pricing

2 / 31



Demand Response

Demand response: active participation of consumers in (i)
efficient consumption of electricity and (ii) provision of ancillary
services

Types of demand response:

1 Efficiency

2 Peak load shaving

3 Load shifting
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Retail Pricing

Mechanisms for retail pricing of electricity:

Real-time pricing

Time of use pricing

Critical peak pricing: ToU + critical peak events

Interruptible service
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Motivation of Time of Use Pricing

Electricity service consists of (i) fuel cost for producing
power, and (ii) investment cost for building capacity

If electricity were priced at marginal fuel cost, demand in
peak periods would be too high

ToU pricing breaks bill into two parts:
1 energy component: charge proportional to amount of power

consumption, differs depending on the time of day
2 capacity component: applied to consumers who contribute

to need of installing additional capacity to the system

Goal is to flatten demand across time periods
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Simple Two-Period Model

Consider the following system:

Decreasing marginal benefit functions:
Peak: MB1(p), lasts fraction τ1

Off-peak: MB2(p), lasts fraction τ2

Increasing marginal investment cost MI(x), with MI(x) > 0
for all x

Increasing marginal fuel cost MC(p)

Suppose MB1(0) > MC(0) + MI(0)
τ1
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Welfare Maximization Model

Denote

x : amount of constructed capacity

p1 [p2]: production in peak [off-peak] hours

max τ1

∫ p1

0
MB1(q)dq + τ2

∫ p2

0
MB2(q)dq

−
∫ x

0
MI(q)dq − τ1

∫ p1

0
MC(q)dq − τ2

∫ p2

0
MC(q)dq

(ρ1τ1) : p1 ≤ x

(ρ2τ2) : p2 ≤ x

p1,p2, x ≥ 0

Note: since MI(x) > 0, in the optimal solution p1 = x , p2 = x ,
or both
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KKT Conditions

0 ≤ ρ1 ⊥ x − p1 ≥ 0

0 ≤ ρ2 ⊥ x − p2 ≥ 0

0 ≤ p1 ⊥ −MB1(p1) + MC(p1) + ρ1 ≥ 0

0 ≤ p2 ⊥ −MB2(p2) + MC(p2) + ρ2 ≥ 0

0 ≤ x ⊥ MI(x)− ρ1τ1 − ρ2τ2 ≥ 0

Note: dual multipliers have been scaled by τi
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Marginal Cost Pricing Is Sub-Optimal

Proposition: Suppose that electricity is priced at the marginal
variable cost MC(pi) for each period i . This will result in
suboptimal investment if the system is built so as to make sure
that no demand can be left unserved.

Mathematically: Optimal solution cannot satisfy all of the
following conditions:

MC(p1) = MB1(p1)

MC(p2) = MB2(p2)

x = max(p1,p2)
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Proof: By contradiction, using KKT conditions

We first show ρ1 = ρ2 = 0:

Since MB1(0) > MC(0) + MI(0)
τ1

, optimal investment must
be such that x > 0

Suppose ρi > 0, then pi = x > 0

Since pi > 0, MBi(pi) = MC(pi) + ρi > MC(pi)

Marginal cost pricing requires MBi(pi) = MC(pi), hence
ρ1 = ρ2 = 0
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We then show ρi > 0 for some i :

Since x > 0, by complementarity

MI(x) = ρ1 + ρ2

Since MI(x) > 0 for all x , ρi > 0 for i = 1, or i = 2, or both
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Peak Charges

Interpretation of multiplier ρi : charge above the marginal cost of
the marginal technology, MC(pi)

For constant marginal investment cost, MI(x) = MI, additional
charges are exactly equal to capital investment costs
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Example: Pricing Peak and Off-Peak

Consider the following market:

MI(x) = 5 $/MWh

MC(p) = 80 $/MWh

Peak demand MB1(p) = max(1000− p,0) $/MWh, with
τ1 = 20%

Off-peak demand MB2(p) = max(500− p,0) $/MWh, with
τ2 = 80%

Problem: You are told that optimal investment is x = 895 MW.
What are the optimal ToU prices?
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Since optimal x is 895 MW, then either p1 = 895 MW,
p2 = 895 MW, or both

Check that MB1(895) = 105 $MWh and MB2(895) = 0
$/MWh

Obviously p2 < x (marginal benefit at 895 MW is zero,
marginal cost is 80 $/MWh)

Therefore, p1 = 895 MW

Price in peak periods: 105 $/MWh

From KKT conditions,

MB2(p2) = MC(p2)

Price in off-peak periods: 80 $/MWh
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Graphical Illustration of Tariff

Consider the fixed retail tarrif which is average of ToU tariff:

0.2 · 105 + 0.8 · 80 = 85$/MWh

Figure: Demand under fixed retail pricing (black solid curve) and time
of use pricing (red dashed curve). Effect of ToU pricing: depresses
consumption in peak hours, increases consumption in off-peak hours.
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Example: Sharing Peak Charges

Consider the previous example, with MB2(p2) = 980− p
$/MWh (and everything else unchanged)

Price of 80 $/MWh in off-peak hours violates installed capacity

Optimal solution: x = 899 MW, p1 = p2 = 899 MW

Sharing of capital costs among peak and off-peak consumers:

ρ1/τ1 = 21 $/MWh

ρ2/τ2 = 1 $/MWh
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System Reliability

Define
r(v) = F (D(v))

where

D(v): demand function (power demand resulting from
consumers who value power at v or more)

F (L): probability of having L MW or more of power
available

Interpretation of r(v): probability of being able to satisfy
consumers with valuation v or higher
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Example

Consider the following system:

Reliable technology: 295 MW

Unreliable technology: 1880 MW

Demand function: D(v) = 1620− 4v
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Unreliable technology described by Markov chain

Stationary distribution: πoff = 0.167, πon = 0.833
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Generator availability:

F (L) =


1, L ≤ 295 MW

0.833, 295 MW < L ≤ 2175 MW
0, L > 2175 MW

Service reliability:

r(D(v)) =

{
0.833, 0 $/MWh ≤ v ≤ 331.25 $/MWh

1, 331.25 $/MWh < v ≤ 405 $/MWh
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Priority Service Contracts

Priority service contracts are defined as

(r ,p(r))

where r is the reliability of service and p(r) is the price paid for r

Note: p(r) will determine reliability chosen by customers

Goal: design p(r) so that customers with higher valuation
receive more reliable service
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Steering Customer Choice

Load with valuation v selects reliability by solving

max
r

r · v − p(r)

First order condition:
v − p′(r) = 0

Suppose p(r) satisfies:

p′(r(D(v))) = v (1)

r · v − p(r) ≥ 0 (2)

Load with valuation v

is willing to procure a reliability contract

chooses reliability level r(D(v))
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Computing the Price Menu

Integrating equation (1) by parts:

p̂(v) = p0 +

∫ v

v0

y · dr(D(y)) = v · r(D(v))−
∫ v

v0

r(D(y))dy (3)

where v0 is cutoff valuation: valuation of cheapest customer
who chooses to buy a priority service contract

Parametrizing with respect to v , the menu (r ,p(r)) is

{r(D(v)), p̂(v), v ∈ [v0,V ]}

where V is maximum valuation
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Fixed Charge

Fixed charge p0 determines cutoff valuation v0:

v0 · r(v0)− p0 = 0 (4)

Customers with v < v0 do not procure reliability contracts
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Example Continued

r(v) =

{
0.833, 0 ≤ v ≤ 331.25

1, 331.25 < v ≤ 405

Suppose v0 = 10 $/MWh, then from equation (4):

p0 = 10 · 0.833 = 8.33 $/MWh

From equation (3):

p̂(v) = p0 +

∫ v

v0

u · dr(u)

=

{
8.33, 10 ≤ v ≤ 331.25

8.33 + 331.25 · 0.167, 331.25 < v ≤ 405

=

{
8.33, 10 ≤ v ≤ 331.25

63.65, 331.25 < v ≤ 405
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Parametrizing with respect to v :

p(r) =

{
8.33, r = 0.833
63.65, r = 1

This is a menu with 2 options
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Load Self-Selection

Consider choice of load with valuation v :

max{0,0.833 · v − 8.33, v − 63.65}

r = 0 is optimal if 0.833 · v − 8.33 ≤ 0 and v − 63.65 ≤ 0,
i.e. v ≤ 10.

r = 0.833 is optimal if 0 ≤ 0.833 · v − 8.33 and
v − 63.65 ≤ 0.833 · v − 8.33, i.e. 10 ≤ v ≤ 331.25.

r = 1 is optimal if 0 ≤ v − 63.65 and
0.833 · v − 8.33 ≤ v − 63.65, i.e. v ≥ 331.25.
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Different Choice of Fixed Charge

If menu designer would like all customers to procure reliability
contracts, i.e. v0 = 0, then p0 = 0 and

p(r) =

{
0, r ≤ 0.833

55.32, 0.833 < r ≤ 1
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Service Policy

In case of shortage, customers with higher r served first

Note: In order to design the menu, we used aggregate
information (r(L) and D(v))

Menu selections allow us to dispatch individual customers
efficiently!

31 / 31


	Time of Use Pricing
	Priority Service Pricing

