# Demand Response <br> Quantitative Energy Economics 

Anthony Papavasiliou

## Contents

(9) Time of Use Pricing
(2) Priority Service Pricing

## Demand Response

Demand response: active participation of consumers in (i) efficient consumption of electricity and (ii) provision of ancillary services

Types of demand response:
(1) Efficiency
(2) Peak load shaving
(3) Load shifting

## Retail Pricing

Mechanisms for retail pricing of electricity:

- Real-time pricing
- Time of use pricing
- Critical peak pricing: ToU + critical peak events
- Interruptible service


## Table of Contents

(9) Time of Use Pricing
2) Priority Service Pricing

## Motivation of Time of Use Pricing

- Electricity service consists of (i) fuel cost for producing power, and (ii) investment cost for building capacity
- If electricity were priced at marginal fuel cost, demand in peak periods would be too high
- ToU pricing breaks bill into two parts:
(1) energy component: charge proportional to amount of power consumption, differs depending on the time of day
(2) capacity component: applied to consumers who contribute to need of installing additional capacity to the system
- Goal is to flatten demand across time periods


## Simple Two-Period Model

Consider the following system:

- Decreasing marginal benefit functions:
- Peak: $M B_{1}(p)$, lasts fraction $\tau_{1}$
- Off-peak: $M B_{2}(p)$, lasts fraction $\tau_{2}$
- Increasing marginal investment cost $M I(x)$, with $\operatorname{MI}(x)>0$ for all $x$
- Increasing marginal fuel cost $M C(p)$
- Suppose $M B_{1}(0)>M C(0)+\frac{M I(0)}{\tau_{1}}$


## Welfare Maximization Model

## Denote

- $x$ : amount of constructed capacity
- $p_{1}$ [ $p_{2}$ ]: production in peak [off-peak] hours

$$
\begin{aligned}
& \max \tau_{1} \int_{0}^{p_{1}} M B_{1}(q) d q+\tau_{2} \int_{0}^{p_{2}} M B_{2}(q) d q \\
& -\int_{0}^{x} M I(q) d q-\tau_{1} \int_{0}^{p_{1}} M C(q) d q-\tau_{2} \int_{0}^{p_{2}} M C(q) d q \\
\left(\rho_{1} \tau_{1}\right): & p_{1} \leq x \\
\left(\rho_{2} \tau_{2}\right): & p_{2} \leq x \\
& p_{1}, p_{2}, x \geq 0
\end{aligned}
$$

Note: since $M I(x)>0$, in the optimal solution $p_{1}=x, p_{2}=x$, or both

## KKT Conditions

$$
\begin{aligned}
& 0 \leq \rho_{1} \perp x-p_{1} \geq 0 \\
& 0 \leq \rho_{2} \perp x-p_{2} \geq 0 \\
& 0 \leq p_{1} \perp-M B_{1}\left(p_{1}\right)+M C\left(p_{1}\right)+\rho_{1} \geq 0 \\
& 0 \leq p_{2} \perp-M B_{2}\left(p_{2}\right)+M C\left(p_{2}\right)+\rho_{2} \geq 0 \\
& 0 \leq x \perp M I(x)-\rho_{1} \tau_{1}-\rho_{2} \tau_{2} \geq 0
\end{aligned}
$$

Note: dual multipliers have been scaled by $\tau_{i}$

## Marginal Cost Pricing Is Sub-Optimal

Proposition: Suppose that electricity is priced at the marginal variable cost $M C\left(p_{i}\right)$ for each period $i$. This will result in suboptimal investment if the system is built so as to make sure that no demand can be left unserved.

Mathematically: Optimal solution cannot satisfy all of the following conditions:

- $M C\left(p_{1}\right)=M B_{1}\left(p_{1}\right)$
- $M C\left(p_{2}\right)=M B_{2}\left(p_{2}\right)$
- $x=\max \left(p_{1}, p_{2}\right)$

Proof: By contradiction, using KKT conditions
We first show $\rho_{1}=\rho_{2}=0$ :

- Since $M B_{1}(0)>M C(0)+\frac{M /(0)}{\tau_{1}}$, optimal investment must be such that $x>0$
- Suppose $\rho_{i}>0$, then $p_{i}=x>0$
- Since $p_{i}>0, M B_{i}\left(p_{i}\right)=M C\left(p_{i}\right)+\rho_{i}>M C\left(p_{i}\right)$
- Marginal cost pricing requires $M B_{i}\left(p_{i}\right)=M C\left(p_{i}\right)$, hence $\rho_{1}=\rho_{2}=0$

We then show $\rho_{i}>0$ for some $i$ :

- Since $x>0$, by complementarity

$$
M I(x)=\rho_{1}+\rho_{2}
$$

- Since $\operatorname{MI}(x)>0$ for all $x, \rho_{i}>0$ for $i=1$, or $i=2$, or both


## Peak Charges

Interpretation of multiplier $\rho_{i}$ : charge above the marginal cost of the marginal technology, $M C\left(p_{i}\right)$

For constant marginal investment cost, $M I(x)=M I$, additional charges are exactly equal to capital investment costs

## Example: Pricing Peak and Off-Peak

Consider the following market:

- $M I(x)=5 \$ / \mathrm{MWh}$
- $M C(p)=80 \$ / M W h$
- Peak demand $M B_{1}(p)=\max (1000-p, 0) \$ / M W h$, with

$$
\tau_{1}=20 \%
$$

- Off-peak demand $M B_{2}(p)=\max (500-p, 0) \$ / M W h$, with $\tau_{2}=80 \%$

Problem: You are told that optimal investment is $x=895$ MW.
What are the optimal ToU prices?

- Since optimal $x$ is 895 MW , then either $p_{1}=895 \mathrm{MW}$, $p_{2}=895 \mathrm{MW}$, or both
- Check that $M B_{1}(895)=105 \$ M W h$ and $M B_{2}(895)=0$ \$/MWh
- Obviously $p_{2}<x$ (marginal benefit at 895 MW is zero, marginal cost is $80 \$ / \mathrm{MWh}$ )
- Therefore, $p_{1}=895 \mathrm{MW}$
- Price in peak periods: $105 \$ / \mathrm{MWh}$
- From KKT conditions,

$$
M B_{2}\left(p_{2}\right)=M C\left(p_{2}\right)
$$

- Price in off-peak periods: $80 \$ / \mathrm{MWh}$


## Graphical Illustration of Tariff

Consider the fixed retail tarrif which is average of ToU tariff:

$$
0.2 \cdot 105+0.8 \cdot 80=85 \$ / \mathrm{MWh}
$$



Figure: Demand under fixed retail pricing (black solid curve) and time of use pricing (red dashed curve). Effect of ToU pricing: depresses consumption in peak hours, increases consumption in off-peak hours.

## Example: Sharing Peak Charges

Consider the previous example, with $M B_{2}\left(p_{2}\right)=980-p$ $\$ / \mathrm{MWh}$ (and everything else unchanged)

Price of $80 \$ / \mathrm{MWh}$ in off-peak hours violates installed capacity
Optimal solution: $x=899 \mathrm{MW}, p_{1}=p_{2}=899 \mathrm{MW}$
Sharing of capital costs among peak and off-peak consumers:

- $\rho_{1} / \tau_{1}=21 \$ / \mathrm{MWh}$
- $\rho_{2} / \tau_{2}=1 \$ / \mathrm{MWh}$


## Table of Contents

## (1) Time of Use Pricing

(2) Priority Service Pricing

## System Reliability

Define

$$
r(v)=F(D(v))
$$

where

- $D(v)$ : demand function (power demand resulting from consumers who value power at $v$ or more)
- $F(L)$ : probability of having $L$ MW or more of power available

Interpretation of $r(v)$ : probability of being able to satisfy consumers with valuation $v$ or higher

## Example

Consider the following system:

- Reliable technology: 295 MW
- Unreliable technology: 1880 MW
- Demand function: $D(v)=1620-4 v$

Unreliable technology described by Markov chain


Stationary distribution: $\pi_{\text {off }}=0.167, \pi_{\text {on }}=0.833$

- Generator availability:

$$
F(L)=\left\{\begin{array}{cc}
1, & L \leq 295 \mathrm{MW} \\
0.833, & 295 \mathrm{MW}<L \leq 2175 \mathrm{MW} \\
0, & L>2175 \mathrm{MW}
\end{array}\right.
$$

- Service reliability:

$$
r(D(v))=\left\{\begin{array}{cc}
0.833, \quad 0 \$ / \mathrm{MWh} \leq v \leq 331.25 \$ / \mathrm{MWh} \\
1, \quad 331.25 \$ / \mathrm{MWh}<v \leq 405 \$ / \mathrm{MWh}
\end{array}\right.
$$

## Priority Service Contracts

Priority service contracts are defined as

$$
(r, p(r))
$$

where $r$ is the reliability of service and $p(r)$ is the price paid for $r$

Note: $p(r)$ will determine reliability chosen by customers

Goal: design $p(r)$ so that customers with higher valuation receive more reliable service

## Steering Customer Choice

Load with valuation $v$ selects reliability by solving

$$
\max _{r} r \cdot v-p(r)
$$

First order condition:

$$
v-p^{\prime}(r)=0
$$

Suppose $p(r)$ satisfies:

$$
\begin{align*}
p^{\prime}(r(D(v))) & =v  \tag{1}\\
r \cdot v-p(r) & \geq 0 \tag{2}
\end{align*}
$$

Load with valuation $v$

- is willing to procure a reliability contract
- chooses reliability level $r(D(v))$


## Computing the Price Menu

Integrating equation (1) by parts:

$$
\begin{equation*}
\hat{p}(v)=p_{0}+\int_{v_{0}}^{v} y \cdot d r(D(y))=v \cdot r(D(v))-\int_{v_{0}}^{v} r(D(y)) d y \tag{3}
\end{equation*}
$$

where $v_{0}$ is cutoff valuation: valuation of cheapest customer who chooses to buy a priority service contract

Parametrizing with respect to $v$, the menu $(r, p(r))$ is

$$
\left\{r(D(v)), \hat{p}(v), v \in\left[v_{0}, V\right]\right\}
$$

where $V$ is maximum valuation

## Fixed Charge

Fixed charge $p_{0}$ determines cutoff valuation $v_{0}$ :

$$
\begin{equation*}
v_{0} \cdot r\left(v_{0}\right)-p_{0}=0 \tag{4}
\end{equation*}
$$

Customers with $v<v_{0}$ do not procure reliability contracts

## Example Continued

$$
r(v)=\left\{\begin{array}{cc}
0.833, & 0 \leq v \leq 331.25 \\
1, & 331.25<v \leq 405
\end{array}\right.
$$

Suppose $v_{0}=10 \$ / \mathrm{MWh}$, then from equation (4):

$$
p_{0}=10 \cdot 0.833=8.33 \$ / \mathrm{MWh}
$$

From equation (3):

$$
\begin{aligned}
& \hat{p}(v)=p_{0}+\int_{v_{0}}^{v} u \cdot \operatorname{dr}(u) \\
& =\left\{\begin{array}{cc}
8.33, & 10 \leq v \leq 331.25 \\
8.33+331.25 \cdot 0.167, & 331.25<v \leq 405
\end{array}\right. \\
& =\left\{\begin{array}{cc}
8.33, & 10 \leq v \leq 331.25 \\
63.65, & 331.25<v \leq 405
\end{array}\right.
\end{aligned}
$$

Parametrizing with respect to $v$ :

$$
p(r)=\left\{\begin{array}{cc}
8.33, & r=0.833 \\
63.65, & r=1
\end{array}\right.
$$

This is a menu with 2 options

## Load Self-Selection

Consider choice of load with valuation $v$ :

$$
\max \{0,0.833 \cdot v-8.33, v-63.65\}
$$

- $r=0$ is optimal if $0.833 \cdot v-8.33 \leq 0$ and $v-63.65 \leq 0$, i.e. $v \leq 10$.
- $r=0.833$ is optimal if $0 \leq 0.833 \cdot v-8.33$ and $v-63.65 \leq 0.833 \cdot v-8.33$, i.e. $10 \leq v \leq 331.25$.
- $r=1$ is optimal if $0 \leq v-63.65$ and $0.833 \cdot v-8.33 \leq v-63.65$, i.e. $v \geq 331.25$.


## Different Choice of Fixed Charge

If menu designer would like all customers to procure reliability contracts, i.e. $v_{0}=0$, then $p_{0}=0$ and

$$
p(r)=\left\{\begin{array}{cc}
0, & r \leq 0.833 \\
55.32, & 0.833<r \leq 1
\end{array}\right.
$$

## Service Policy

In case of shortage, customers with higher $r$ served first

Note: In order to design the menu, we used aggregate information $(r(L)$ and $D(v))$

Menu selections allow us to dispatch individual customers efficiently!

