Scarcity Pricing Market Design Considerations

Anthony Papavasiliou, Yves Smeers Center for Operations Research and Econometrics Université catholique de Louvain

CORE Energy Day

April 16, 2018

1/43

Outline

- Motivation of Scarcity Pricing
- How Scarcity Pricing Works
- Research Objective

Building Up Towards the Benchmark Design (SCV)

- Energy-Only Real-Time Market
- Energy Only in Real Time and Day Ahead
- Adding Uncertainty in Real Time
- Reserve Capacity
- Illustration on a Small Example
- 4 Conclusions and Perspectives

Outline

- Motivation of Scarcity Pricing
- How Scarcity Pricing Works
- Research Objective

2 Building Up Towards the Benchmark Design (SCV)

- Energy-Only Real-Time Market
- Energy Only in Real Time and Day Ahead
- Adding Uncertainty in Real Time
- Reserve Capacity
- Illustration on a Small Example
- 4 Conclusions and Perspectives

Challenges of Renewable Energy Integration

Renewable energy integration

- depresses electricity prices
- requires flexibility due to (i) uncertainty, (ii) variability, (iii) non-controllable output

Motivation for Scarcity Pricing

- Scarcity pricing: adjustment to price signal of *real-time* electricity markets in order to compensate *flexible* resources
- Definition of flexibility for *this* talk:
 - Secondary reserve: reaction in a few seconds, full response in 7 minutes
 - Tertiary reserve: available within 15 minutes
 - such as can be provided by
 - combined cycle gas turbines
 - demand response
- We will not be addressing sources of flexibility for which scarcity pricing is not designed to compensate (e.g. seasonal renewable supply scarcity)

The CREG Scarcity Pricing Studies

- First study (2015): How would electricity prices change if we introduce ORDC (Hogan, 2005) in the Belgian market?
- Second study (2016): How does scarcity pricing depend on
 - Strategic reserve
 - Value of lost load
 - Restoration of nuclear capacity
 - Day-ahead (instead of month-ahead) clearing
- Third study (2017): Can we take a US-inspired design and plug it in to the existing European market?

In its simplest form, the scarcity pricing adder is computed as

$$(VOLL - \hat{MC}(\sum_{g} p_{g})) \cdot LOLP(R),$$

where

- VOLL is the value of lost load
- *MC*(∑_g p_g) is the incremental cost for meeting an additional increment in demand
- *R* is the amount of capacity that can respond within an imbalance interval
- $LOLP : \mathbb{R}_+ \to [0, 1]$ is the loss of load probability

Assume the following inputs:

- Day-ahead energy price: $\lambda PDA = 20 \in /MWh$
- Day-ahead reserve price: $\lambda RDA = 65 \in /MWh$
- Real-time marginal cost of marginal unit: 80.3 €/MWh
- Real-time reserve price: $\lambda RRT = 3.9 \in /MWh$
- Real-time energy price: *\PRT* = 84.2 €/MWh
- Generator capacity: $P_g^+ = 125 \text{ MW}$

Forward Reserve Awarded, Not Deployed

Settlement	Formula	Price	Quantity	Cash flow
type		[€/MWh]	[MW]	[€/h]
DA energy	$\lambda PDA \cdot pDA$	20	pDA = 0	0
DA reserve	$\lambda RDA \cdot rDA$	65	<i>rDA</i> = 25	1625
RT energy	$\lambda PRT \cdot (pRT - pDA)$	80.3	<i>pRT</i> = 100	8030
Total				9655

Table: Without Adder

Settlement	Formula	Price	Quantity	Cash flow
type		[€/MWh]	[MW]	[€/h]
DA energy	$\lambda PDA \cdot pDA$	20	<i>pDA</i> = 0	0
DA reserve	$\lambda RDA \cdot rDA$	65	<i>rDA</i> = 25	1625
RT energy	$\lambda PRT \cdot (pRT - pDA)$	84.2	<i>pRT</i> = 100	8420
RT reserve	$\lambda RRT \cdot (rRT - rDA)$	3.9	<i>rRT</i> = 25	0
Total				10045

Table: With Adder

Forward Reserve Awarded And Deployed

Settlement	Formula	Price	Quantity	Cash flow
type		[€/MWh]	[MW]	[€/h]
DA energy	$\lambda PDA \cdot pDA$	20	pDA = 0	0
DA reserve	$\lambda RDA \cdot rDA$	65	<i>rDA</i> = 25	1625
RT energy	$\lambda PRT \cdot (pRT - pDA)$	80.3	<i>pRT</i> = 125	10037.5
Total				11662.5

Table: Without Adder

Settlement	Formula	Price	Quantity	Cash flow
type		[€/MWh]	[MW]	[€/h]
DA energy	$\lambda PDA \cdot pDA$	20	<i>pDA</i> = 0	0
DA reserve	$\lambda RDA \cdot rDA$	65	<i>rDA</i> = 25	1625
RT energy	$\lambda PRT \cdot (pRT - pDA)$	84.2	<i>pRT</i> = 125	10525
RT reserve	$\lambda RRT \cdot (rRT - rDA)$	3.9	<i>rRT</i> = 0	-97.5
Total				12052.5

Table: With Adder

Focus of this presentation: in order to *back-propagate* the scarcity signal

- When should day-ahead reserve auctions be conducted? Before, during, or after the clearing of the energy market?
- Do we need *co-optimization* in real time?
- Do we need virtual virtual bidding?

	Simultaneous DA	RT co-optimization	Virtual
	energy and reserves	of energy/reserve	trading
SCV	\checkmark	\checkmark	\checkmark
SCP	\checkmark	\checkmark	
SEV	\checkmark		\checkmark
SEP	\checkmark		
RCV		\checkmark	\checkmark
RCP		\checkmark	
REV			\checkmark
REP			

The dilemmas of the market design:

- Simultaneous day-ahead clearing of energy and reserve, or Reserve first (S/R)?
- Cooptimization of energy and reserve in real time, or Energy only (C/E)?
- Virtual trading, or Physical trading only (V/P)?

Outline

Context

- Motivation of Scarcity Pricing
- How Scarcity Pricing Works
- Research Objective

Building Up Towards the Benchmark Design (SCV)

- Energy-Only Real-Time Market
- Energy Only in Real Time and Day Ahead
- Adding Uncertainty in Real Time
- Reserve Capacity
- Illustration on a Small Example
- 4 Conclusions and Perspectives

Energy-Only Real-Time Market

Notation

- Sets
 - Generators: G
 - Loads: L
- Parameters
 - Bid quantity of generators: P_g^+
 - Bid quantity of loads: D⁺_l
 - Bid price of generators: C_g
 - Bid price of loads: V_l
- Decisions
 - Production of generators: pRT_g
 - Consumption of loads: dRT₁
- Dual variables
 - Real-time energy price: λRT

Just a *merit-order* dispatch model:

$$egin{aligned} \max \sum_{l \in L} V_l \cdot dRT_l &- \sum_{g \in G} C_g \cdot pRT_g \ pRT_g &\leq P_g^+, g \in G \ d_l &\leq D_l^+, l \in L \ (\lambda RT): & \sum_{g \in G} p_g = \sum_{l \in L} d_l \ p_g, d_l &\geq 0, g \in G, l \in L \end{aligned}$$

ヘロト ヘロト ヘヨト ヘヨト

2

17/43

•

Energy-Only in Real Time and Day Ahead

Decisions

- Day-ahead energy production of generator: pDAg
- Day-ahead energy consumption of load: dDA₁
- Dual variables
 - Day-ahead energy price: λDA

Model

Generator profit maximization:

 $egin{aligned} &\max \lambda \textit{DA} \cdot \textit{pDA}_g + \lambda \textit{RT} \cdot (\textit{pRT}_g - \textit{pDA}_g) - \textit{C}_g \cdot \textit{pRT}_g \ &p\textit{RT}_g \leq \textit{P}_g^+ \ &p\textit{RT}_g \geq 0 \end{aligned}$

Load profit maximization:

 $\begin{aligned} \max & -\lambda DA \cdot dDA_{l} + V_{l} \cdot dRT_{l} - \lambda RT \cdot (dRT_{l} - dDA_{l}) \\ dRT_{l} \leq D_{l}^{+} \\ dRT_{l} \geq 0 \end{aligned}$

Market equilibrium:

$$\sum_{g \in G} pRT_g = \sum_{I \in L} dRT_I$$
$$\sum_{g \in G} pDA_g = \sum_{I \in L} dDA_I$$

20/43

 Back-propagation: from KKT conditions of profit maximization, we have

$\lambda DA = \lambda RT$

- In fact, day-ahead and real-time parts of the model can be completely *decoupled*
- We have introduced virtual trading: agents can take positions in the day-ahead market which do not correspond to their physical characteristics

Adding Uncertainty in Real Time

Sets

- Set of uncertain real-time outcomes (e.g. renewable supply forecast errors, demand forecast errors): Ω
- Parameters
 - Real-time profit of agent: $\Pi RT_{g,\omega}$
- Functions
 - Risk-adjusted profit of random payoff: $\mathcal{R}_g : \mathbb{R}^{\Omega} \to \mathbb{R}$

Generator profit maximization:

 $\max \lambda DA \cdot pDA_g + \mathcal{R}_g(\Pi RT_{g,\omega} - \lambda RT_{\omega} \cdot pDA_g),$

where

$$\sqcap RT_{g,\omega} = (\lambda RT_\omega - C_g) \cdot pRT_{g,\omega}$$

Load profit maximization:

$$\max -\lambda DA \cdot dDA_{l} + \mathcal{R}_{l}(\Pi RT_{l,\omega} + \lambda DA_{\omega} \cdot dDA_{l})$$

where

$$\Pi RT_{I,\omega} = (V_I - \lambda RT_{\omega}) \cdot dRT_{I,\omega}$$

Day-ahead market equilibrium:

$$\sum_{g\in G} pDA_g = \sum_{l\in L} dDA_l$$

How do we model attitude of agent towards risk, \mathcal{R} ?

Let's consider the conditional value at risk, CVaR

- Parameters
 - Percent of poorest scenarios considered in evaluation of risked payoff: α_g
 - Probability of outcome ω: *p*_ω
- Variables
 - Conditional value at risk: CVaRg
 - Value at risk: VaRg
 - Auxiliary variable for determination of risk-adjusted real-time payoff: u_{g,ω}
- Dual variables:
 - Risk-neutral probability of agent: *q_{g,ω}*

There exists a *linear programming formulation* of \mathcal{R}

For example, the generator problem reads:

$$\begin{array}{ll} \max \lambda DA \cdot pDA_g + CVaR_g \\ CVaR_g = VaR_g - \frac{1}{\alpha_g}\sum_{\omega}p_{\omega} \cdot u_{g,\omega} \\ (q_{g,\omega}): & u_{g,\omega} \geq VaR_g - (\Pi RT_{g,\omega} - \lambda RT_{\omega} \cdot sDA_g) \\ & u_{g,\omega} \geq 0 \end{array}$$

(a) < (a) < (b) < (b)

26/43

Remarks

- Two possible interpretations of profit ΠRT:
 - *Correct* interpretation: λRT_{ω} and $\Pi RT_{g,\omega}$ are *parameters* for day-ahead profit maximization
 - Incorrect interpretation: λRT_ω and ΠRT_{g,ω} are variables for day-ahead profit maximization
 - The two interpretations produce a different result
 - max(R[max]) is different from max(R)
 - Second model can produce out-of-merit dispatch in real time
- Day-ahead price can be potentially different from average real-time price:

$$\lambda DA = \mathbb{E}_{Q_g}[\lambda RT_\omega] = \sum_{\omega \in \Omega} q_{g,\omega} \cdot \lambda RT_\omega, \forall g \in G \cup L$$

 But if there is a single risk-neutral agent with an infinitely deep pocket, then

$$\lambda DA = \mathbb{E}[\lambda RT_{\omega}] = \sum_{\omega \in \Omega} p_{\omega} \cdot \lambda RT_{\omega}$$

Reserve Capacity in Real Time

- Sets
 - ORDC segments: RL
- Parameters
 - ORDC segment valuations: MBR_I
 - ORDC segment capacities: DR_I
 - ramp rate: R_g
- Decisions
 - Real-time demand for reserve capacity: dRRT_{1,w}
 - Real-time supply of reserve capacity: rRT_{g,ω}
- Dual variables
 - Real-time price for reserve capacity: λRRT

Real-time co-optimization of energy and reserve for outcome $\omega \in \Omega$:

$$\begin{split} \max \sum_{l \in RL} MBR_l \cdot dRRT_l + \sum_{l \in L} V_l \cdot d_l - \sum_{g \in G} C_g \cdot p_g \\ (\lambda RT) : & \sum_{g \in G} pRT_g = \sum_{l \in L} dRT_l \\ (\lambda RRT) : & \sum_{g \in G \cup L} rRT_g = \sum_{l \in RL} dRRT_l \\ pRT_g \leq P_{g,\omega}^+, rRT_g \leq R_g, pRT_g + rRT_g \leq P_{g,\omega}^+, g \in G \\ d_l \leq D_l^+, rRT_l \leq R_l, rRT_l \leq dRT_l, l \in L \\ dRRT_l \leq DR_l, l \in RL \\ pRT_g, rRT_g \geq 0, g \in G, dRT_l, rRT_l \geq 0, l \in L, dRRT_l \geq 0, l \in RL \end{split}$$

<ロ> <四> <四> <四> <三</p>

30/43

•

Suppose that a given generator g

- is simultaneously offering energy ($pRT_g > 0$) and reserve ($rRT_g > 0$)
- is not constrained by ramp rate $(rRT_g < R_g)$

We have the following linkage between the energy and reserve capacity price:

 $\lambda RT_{\omega} - C_g = \lambda RRT_{\omega}$

This no-arbitrage relationship is the essence of scarcity pricing

Reserve Capacity in Day Ahead

- Decisions
 - Day-ahead supply of reserve capacity: rDAg
- Dual variables
 - Day-ahead price for reserve capacity: λRDA

Generator profit maximization:

$$\max \lambda DA \cdot pDA_g + \lambda RDA \cdot rDA_g + \mathcal{R}_g(\Pi RT_{g,\omega} - \lambda RT_{\omega} \cdot pDA_g - \lambda RRT_{\omega} \cdot rDA_g),$$

where

$$\Pi RT_{g,\omega} = (\lambda RT_{\omega} - C_g) \cdot pRT_{g,\omega} + \lambda RRT_{\omega} \cdot rRT_{g,\omega}$$

Load profit maximization:

$$\max -\lambda DA \cdot dDA_{l} + \lambda RDA \cdot rDA_{l} + \mathcal{R}_{l}(\Pi RT_{l,\omega} + \lambda RT_{\omega} \cdot dDA_{l} - \lambda RRT_{\omega} \cdot rDA_{l}),$$

where

$$\Pi RT_{l,\omega} = (V_l - \lambda RT) \cdot dRT_l + \lambda RRT \cdot rRT_{l,\omega}$$

Day-ahead market equilibrium:

$$\sum_{g \in G} pDA_g = \sum_{I \in L} dDA_I, \sum_{g \in G \cup L} rDA_g = 0$$

• No need to explicitly introduce ORDC in day-ahead market:

$$\lambda RDA = \mathbb{E}_{Q_g}[\lambda RRT_\omega] = \sum_{\omega \in \Omega} q_{g,\omega} \cdot \lambda RRT_\omega, \forall g \in G \cup L$$

and λRRT is already augmented by ORDC in real-time market

- Should the day-ahead auction explicitly impose physical constraints? This is linked to the question of *virtual trading*:
 - + Imposing explicit physical constraints may move us away from the pure financial market equilibrium
 - Simple examples indicate that the equilibrium solution may require unrealistic liquidity in the day-ahead market

We have arrived at our first target model: SCV

- Simultaneous day-ahead clearing of energy and reserve
- Co-optimization of energy and reserve in real time
- Virtual trading

Outline

Context

- Motivation of Scarcity Pricing
- How Scarcity Pricing Works
- Research Objective

Building Up Towards the Benchmark Design (SCV)

- Energy-Only Real-Time Market
- Energy Only in Real Time and Day Ahead
- Adding Uncertainty in Real Time
- Reserve Capacity

Illustration on a Small Example

4 Conclusions and Perspectives

Consider the following market bids:

- Blast furnace: 323 MW @ 38.13 €/MWh
- Renewable: 106 MW @ 35.71 €/MWh
- Gas-oil: 5 MW @ 85 €/MWh
- LVN: 212 MW @ 315 €/MWh
- Demand: 100 MW (inelastic)

Percent of worst-case scenarios considered in CVaR:

- Blast furnace: $\alpha = 20\%$
- Renewable: $\alpha = 30\%$
- Gas-oil: α = 50%
- LVN: α = 70%
- Demand: *α* = 90%

Consider the scenario tree of the previous section with *equal transition probabilities* at every stage

	λDA	λRDA	λRT_{S1}	λRT_{S2}	λRRT_{S1}	λRRT_{S2}	Welfare
SCV	47.9	11.1	35.7	63.1	0	25	1,001,800
SCP	55.3	18.2	35.7	63.1	0	25	1,005,260
SEV	37.1	0	35.7	38.1	NA	NA	996,369
SEP	37.4	0.4	35.7	38.1	NA	NA	996,556
RCV	47.9	12.8	35.7	63.1	0	25	1,001,950
RCP	50.6	25.0	35.7	63.1	0	25	1,007,120
REV	37.1	0	35.7	38.1	NA	NA	996,329
REP	37.4	0.3	35.7	38.1	NA	NA	996,452

Outline

Context

- Motivation of Scarcity Pricing
- How Scarcity Pricing Works
- Research Objective

Building Up Towards the Benchmark Design (SCV)

- Energy-Only Real-Time Market
- Energy Only in Real Time and Day Ahead
- Adding Uncertainty in Real Time
- Reserve Capacity
- Illustration on a Small Example
- 4 Conclusions and Perspectives

	S/R	C/E	V/P	Preliminary observations
SCV	\checkmark	\checkmark	\checkmark	Theoretical first-best, large (long and
				short) positions in DA reserve market
SCP	\checkmark	\checkmark		Mitigates DA reserve exposure with
				minor effect on DA-RT price convergence
SEV	\checkmark		\checkmark	Not reasonable: degenerates to energy-
				only market without reserve market
SEP	\checkmark			Weak DA reserve capacity signal, not the
				result of back-propagation of RT price
RCV		\checkmark	\checkmark	Inflation of DA reserve price due to
				uncertainty regarding TSO reserve needs
RCP		\checkmark		Highest DA reserve price
REV			\checkmark	Same weakness as SEV
REP				Same attributes as SEP

- Multiple periods
- Multiple reserve types
 - Differentiate secondary and tertiary
 - Differentiate upward and downward
- Unit commitment (per work of De Maere and Smeers)
- Additional features: pumped hydro, imports/exports
- Practical questions:
 - width of ORDC
 - effects of switch every 4 hours on volatility of RT price
- Computational challenges: regularized decomposition of equilibrium models seems promising

For more information:

- anthony.papavasiliou@uclouvain.be
- http://uclengiechair.be/
- https://perso.uclouvain.be/anthony.papavasiliou/public_html/