

Strategic behavior by energy networks under yardstick regulation

Per J. AGRELL Jonas TEUSCH UC Louvain / CORE OECD

CORE Energy Day, UCL, April 16, 2018

Outline

Background

- > Incentive regulation
- > Merger regulation

Models

- > Frontier models
- > Merger model
- > Peer effect model

Analysis: Norway

- > Regulation in Norway
- > Predictability
- > Cross-ownership
- Peer effects

Conclusion

INCENTIVE REGULATION

Focus of regulation

Level of delegation

- > Low: regulator intervenes in process
 - » Heavy-handed regulation
 - » Cost-review processes
 - » Investment reviews
- > High: firm free to decide upon all resources
 - » Performance / output oriented regulation
 - » Light-handed regulation

Regulation and focus of model

Cost-review, weak incentives

- > Command-control; process focus
- Light-handed, weak incentives
 - > No horizontal competition: learning focus
- Incentive regulation, strong incentives
 - > Performance assessment; outcome based

Information access

Low

- Strong protection of operators
- > Poor separation of operations
- > Few operators
- > Poor or tacit definition of task

High

- > Competitive focus
- > High separation of operations and costs
- > Many operators (or collaboration)
- > Clear explicit definition of task

Incentive power and information access

Frontier regulation with revenue cap

Revenue cap = $R_0 \text{ CPI} (I - X - X_i)$

Incentive regulation, corollaries

- > The revenue is independent of the costs of the operator (Schleifer, 1985)
- > Exogenous price changes are passed-through, Littlechild (1983
- > The general productivity of the cap
- > A utilitymaximizing firm cares about the incentive power

EU Regulatory landscape (Energy)

Normative models are popular

Country	Approach	Method	Analysis	Operation
AUSTRALIA	Ex ante	CPI-DEA	x	x
AUSTRIA	Ex ante	DEA (EngM)	x	x
DENMARK	Ex ante	$COLS \rightarrow DEA$	x	x
FINLAND	Ex ante	DEA->StonED	x	x
GERMANY	Ex ante	DEA/SFA Yard	x	x
NETHERLANDS	Ex ante	Cost Yard	x	x
NEW ZEELAND	Ex ante	CPI-DEA	x	x
NORWAY	Ex ante	CPI-DEA Yard	x	x
ICELAND	Ex ante	CPI-DEA	x	-
PORTUGAL	Ex ante	SFA	x	?
CHILE	Ex ante	EngM	x	x
SPAIN	Ex ante	EngM	x	x
ENGLAND	Ex ante	CPI-X	x	x
BELGIUM	Ex ante	$\text{CPI-DEA} \rightarrow \text{CR}$	x	-
SWITZERLAND	Ex ante	(RoR) →?	x	-
SWEDEN	Ex ante	(EngM) →RoR	x	x

MERGER REGULATION

Horizontal mergers?

Cost-driven

- > Economies of scale
- Synergies (scope)
- > Risk sharing
- > Scarce managerial skills

Competition-driven

- Market power through
 - » Scale
 - » Scope
 - » Collusion
- > Information asymmetry

Theoretical reasons for merger

Implementation of collusion, not to improve efficiency, but to limit rent extraction by the regulator

- Auriol and Laffont, 1992; Tangerås, 2002; Dijkstra et al., 2017; Teusch, 2016.
- Defense against hold-up by opportunistic governments (expropriation of sunk investments)
 - > Estache and Wren-Lewis, 2009.

Access to capital markets and lower financial costs in emerging markets Size and scope to capture the regulator.

> Dal Bo', 2006; Agrell and Gautier, 2017.

"Malevolence hypothesis"

Empirical investigations of network mergers

Productivity gains, (mixed) efficiency effects, ownership types – but no strategic concern

- > Cox and Portes, 1998; Kwoka, 2005; Kwoka and Pollitt, 2010),
- > Kumbhakar et al., 2015; Saastamoinen et al., 2017 [Scandinavian networks]

Gaming effects (but only as single-firm examples)

> Jamasb et al., 2003, 2004.

"Benevolence hypothesis"

Literature on horizontal mergers in infrastructure

Yatchew (2000)

- Increasing economies of scale for DSO
- Minimal efficient scale from 20,000 customers
- Filippini and Wild (2001)
 - Strong economies of scale for small DSO
 - MPSS around 100,000 customers
- Bagdadioglu et al. (2007)
 - Turkey (21 proposed mergers from 82 DSO, 1999-2003)
 - Bogetoft-Wang model
 - Strong synergy effects, overall 17% savings,
 No scale effect
- Agrell et al. (2015)
 - Norway (42 real mergers, 1995-2004)
 - Bogetoft-Wang model
 - > Ex ante and ex post evaluation
 - > Small scale effects, small synergy effects
 - > Major effect short-term operating cost (labor vs services)

Scarce empirical material, contradictory results

Regulatory policy towards horizontal mergers

Continental regulators

- > Few and large DSO
- > Poor "competition", high incentives
- > Passive-aggressive towards mergers

Scandinavian regulators

- Many small concession areas
- > High "competition", low incentives
- Supportive towards mergers, avoid gaming (reporting)

Ambivalent regulators

- > Bi-modal distribution of DSO (midgets and giants)
- > Two tier regulator for DSO < 100,000 customers and > 100,000
- > Disincentives to merge, high uncertainty for DSOs

Contributions of the paper

A new measure of strategic peer effect in network mergers

- > Direct control
- > Cross ownership
- > Information rents (playing the regulation)

Empirical evidence of strategic mergers

- > Norway, DSO
- > Frontier yardstick, dynamic (Agrell-Bogetoft-Tind, 2005)
- > Frontier estimate of anticipated merger gains (Bogetoft-Wang, 2005)

Policy implications

- Industrial structure
- Regulatory instrument

Challenges

Direct effects

- Reduction of reference set
- > Elimination of peer

Indirect effects

- > Change of frontier for other firms
- > Yardstick with cap: impact of reallocation of revenues

Cross-ownership effects

- > No change to reference set
- > Control split on several operators
- > Impact on frontier behavior from controlled unit

FRONTIER MODELS

Production plan $(x^k, y^k) \in \mathbb{R}^m_+ \times \mathbb{R}^n_+$

Cost efficiency model DEA

$$D(x, y | \Omega, r) = \min_{\theta, \lambda} \theta$$

s.t. $\theta x \ge \sum_{i \in \Omega} \lambda_i x_i$
 $y \le \sum_{i \in \Omega} \lambda_i y_i$
 $\lambda \in \Gamma(r)$

$$\Gamma(r = \operatorname{crs}) = \mathbb{R}_0^n, \Gamma(r = \operatorname{vrs}) = \{\lambda \in \mathbb{R}_0^n | \sum_i \lambda_i = 1\}.$$

Requirements for regulatory cost norms

A cost norm for regulatory use must respect

- > Feasibility (evidence based estimate)
- > Neutrality (unbiased estimate)
- > Robustness (to data errors)
- > Repeatability (endogeneity of parameters)

Model objective

- > The cost norm is based on structural comparability
- > The resulting rulings should be robust to judicial recourse

Efficiency Concepts

TECHNICAL EFFICIENCY (TE)

> Right methods, procedures etc given input and output mix

SCALE EFFICIENCY (SE)

> Right scale of operation (max output per input, min average cost)

COST EFFICIENCY (CE)

> Minimal cost given local prices

ALLOCATIVE EFFICIENCY (AE)

> Right input mix given prices

Cost efficiency CE

$$CE(c_i, y_i | \Omega, r) = \frac{\hat{C}(y_i | w)}{c_i} = D(c_i, y_i | \Omega, r)$$

Bogetoft and Wang (2005)

$$E^M = L^M \cdot H^M \cdot S^M$$

- *E* Overall efficiency of merger
- L Learning effect of merger
- H Scope effects of merger
- S Size effects of merger

Overall gains E

$$E^{M} = \min\{E \in \mathbb{R}^{+} \mid \left(E \sum_{k \in M} x^{k}, \sum_{k \in M} y^{k}\right) \in T\}$$

If $E^M < 1$, the merger produces savings, and if $E^M > 1$, the merger is costly.

Adjusted overall gains E*

Firm, and use the projected plans $(E^k x^k, y^k)$, $k \in M$, as the basis for calculating the *adjusted overall gains* E^{*M} from the merger:

$$E^{*M} = \min \left\{ \theta \in \mathbb{R}^+ \mid \left(\theta \sum_{k \in M} E^k x^k, \sum_{k \in M} y^k \right) \in T \right\}.$$

Learning effect L

$$L^M = \frac{E^M}{E^{*M}},$$

 $0 \le L \le 1$ takes into account the catch-up of inefficiency by initially inefficient DSOs in the merger

Scale effect S

The scale effects S^M are captured by asking how much could have been saved by operating at full rather than average scale:

$$S^{M} = \min_{S \in \mathbb{R}^{+}} \left\{ \left(S \cdot H^{M} \sum_{k \in M} E^{k} x^{k}, \sum_{k \in M} y^{k} \right) \in T \right\}.$$

Scope gains H

The scope gains H^M are derived from the average input reduction in the production of the average output:

$$H^{M} = \min_{H \in \mathbb{R}^{+}} \left\{ \left(H \frac{\sum_{k \in M} E^{k} x^{k}}{|M|}, \frac{\sum_{k \in M} y^{k}}{|M|} \right) \in T \right\},\$$

MEASURING STRATEGIC MERGERS

Unit B (76% efficient) merging...

Unit B (76% efficient) merging with A = 86% efficient

Unit B (76% efficient) merging with C = 100% efficient!

Importance of peer k

Definition 1.
$$\rho_{i,k} = \frac{\lambda_k^i}{\sum_k \lambda_k^i}$$
.

Relative impact of k on the target for i

HI: Peer predictability

Predictability

- Important for investments
- > Best practice regulation in energy transition

NRA changes DEA model to

- > Fewer outputs
- > Five-year averages
- Deterministic stable outputs

Peer stability

Definition 2. $PS_i^t = \frac{1}{2} \sum_{j \in \Psi_i^{t-1} \cap \Psi_i^t} (\rho_{i,j}^{t-1} + \rho_{i,j}^t)$

Peer effects

Definition 3. $\xi_{i,k}^t = \frac{D(x_i^t, y_i^t | \Omega^t, r)}{D(x_i^t, y_i^t | \Omega_{-k}^t, r)} \ i, k \in \Omega^t$ **Proposition 1.** $0 < \xi_{i,k} \le 1, \ i, k \in \Omega^t$

Change in observed efficiency of i if firm k is removed

Peer effect and profitability

Proposition 2. Ceteris paribus, firm i's profit increases after peer k disappears from the frontier if and only if $\xi_{i,k} < \tilde{\xi}_{i,k}$, where $\tilde{\xi}_{i,k} \equiv \frac{\sum_{j \neq i} c_j^*}{\sum_{j \neq i} c_j^* / \xi_{j,k}}$ and $c_i^* \equiv c_i D(x_i, y_i | \Omega) \quad \forall i, k \in \Omega$. Profitability increases in $\tilde{\xi}_{i,k} - \xi_{i,k}, \quad \forall i, k \in \Omega$.

Cross-ownership

$$CP_{i,j\neq i} = \sum_{g} s_g^i \times \sum_{g} s_g^{j\neq i}$$

Measure of two firms' (i,j) cross-held shares for same owner g

Peer effects of mergers

Definition 4.
$$\omega_i^M = \frac{D(x_i, y_i | \Omega^t, r)}{D(x_i, y_i | \Omega^M, r)}, \ i \in \Omega^M.$$

Change in efficiency score of *i* for merger M

Proposition 3. Ceteris paribus, firm i's profit increases if and only if $\omega_i^M < \tilde{\omega}_i^M$, $i \in \Omega^M$, where $\tilde{\omega}_i^M \equiv \frac{\sum_{j \neq i} c_j^*}{\sum_{j \neq i} c_j^* / \omega_j^M} \quad \forall i \in \Omega^M$. Profitability increases in $\tilde{\omega}_i^M - \omega_i^M$.

Efficiency effects of mergers

$$E_M = D(x_M, y_M | \Omega^t, r)$$

$$E_M = L_M \cdot \underbrace{H_M \cdot S_M}_{E_M^*}$$

CASE OF NORWAY

Network regulation in Norway

- > Revenue cap regulation, with individual X based on DEA (ex post 2001)
- > DEA under VRS assumption
- 2007 to 2009
 - > DEA Yardstick model I (9 outputs), CRS
- 2010 to 2012
 - > DEA Yardstick model II (8 outputs), CRS

2013 -

> DEA Yardstick model III (3 outputs), CRS

Norwegian revenue cap regulation

The effect of incentive regulation

Data

Norwegian electricity DSO Panel 2011-2015 Audited data from NRA, used in regulation (NRA uses 5-year averages only for references, we use of all)

Mergers post 2013 :

- > 13 mergers
- > Only 5 contiguous adjacent area
- > 28 involved operators

DEA models

Table 2: Outputs used in DEA model

Variable	Unit of measurement	2007-2009	2010-2012	2013 +
Delivered energy	MWh	Х	Х	
Customers - cottages	#	Х	Х	
Customers - residential	#	Х	Х	
Customers - total	#			Х
High-voltage (HV) lines	km	Х	Х	Х
Substations	#	Х	Х	Х
Transformers	Weighted measure	Х		
Forest	Forest index \times HV overhead lines	Х	Х	
Snow	Snow index \times HV overhead lines	Х	Х	
Coast	Coast index \times HV overhead lines	Х	Х	

Source: NVE (2012).

Askøy Energi AS – 🗙 × × × × Eidefoss AS - 🗙 × × × × Follo Nett AS -× NTE Nett AS - 🗙 × × × Nord-Salten Kraft AS - 🗙 × × × × Nord-Østerdal Kraftlag SA – 🗙 × 2012 × 2013 × 2014 × 2015 Trøgstad Elverk AS - 🗙 2011

Mergers 2011-2015

Merged firm $(t+1)$	Constituent firms (t)	Year (t)
TrønderEnergi Nett AS	Malvik Everk AS, $\mathbf{TrønderEnergi}$ Nett AS, Tydal KF	2012
Mørenett AS Hafslund Nett AS Nordlandsnett AS	Tafjord Kraftnett AS, Tussa Nett AS Fortum Distribution AS, Hafslund Nett AS Dragefossen Kraftanlegg AS, Nordlandsnett AS	2013 2013 2013
Eidsiva Nett AS Fosen Nett AS ISE Nett AS Nordvest Nett AS	Eidsiva Nett AS , Elverum Nett AS Fosen Kraft AS, Rissa Kraftlag SA Fauske Lysverk As, Sørfold Kraftlag AS Ørskog Energi AS, Vestnes Energi AS	2014 2014 2014 2014
Glitre Energi Nett AS Haugaland Kraft Nett AS Nordlandsnett AS Norgesnett AS TrønderEnergi Nett AS	EB Nett AS, Hadeland Energinett AS, Lier Nett AS Haugaland Kraft Nett AS, SKL Nett As Nordlandsnett AS, Rødøy-Lurøy Kraftverk AS Askøy Energi AS, Follo Nett AS, Fredrikstad Nett AS Selbu Energiverk AS, TrønderEnergi Nett AS	2015 2015 2015 2015 2015 2015

Table 5: Mergers and take overs (2011 $\leq t \leq 2015)$

Note: In case of a take over, the acquiring firm is marked in bold. Sources: NVE, Company register and DSO websites.

Figure 6: Map of mergers and takeovers

Note: Geospatial data is from NVE's website.

Efficiency effects L,H,S

	Year	L_M	H_M	S_M
TrønderEnergi Nett AS	2012	0.78	1.00	1.03
Mørenett AS Hafslund Nett AS Nordlandsnett AS	2013 2013 2013	$0.66 \\ 0.94 \\ 0.78$	$0.99 \\ 0.98 \\ 1.00$	$1.02 \\ * \\ 1.03$
Eidsiva Nett AS Fosen Nett AS ISE Nett AS Nordvest Nett AS	2014 2014 2014 2014	$0.84 \\ 0.80 \\ 0.60 \\ 0.86$	$1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00$	$1.25 \\ 0.98 \\ 0.95 \\ 1.00$
Glitre Energi Nett AS Haugaland Kraft AS Nordlandsnett AS Norgesnett AS TrønderEnergi Nett AS	$2015 \\ 2015 \\ 2015 \\ 2015 \\ 2015 \\ 2015 \\ 2015$	$\begin{array}{c} 0.86 \\ 0.71 \\ 0.72 \\ 0.96 \\ 0.84 \end{array}$	$\begin{array}{c} 0.96 \\ 1.00 \\ 0.99 \\ 0.99 \\ 1.00 \end{array}$	$1.08 \\ 1.01 \\ 1.04 \\ 1.05 \\ 1.01$

Table 8: Efficiency effects of mergers

Characteristics of merging firms

	Mean	Median	Min	Max	Ν
Totex (in 2015-kNOK)	120524.9	48729.1	9872.6	1961914.9	112
Customers $(\#)$	26405.0	7164	1043	689215	112
Substations $(\#)$	1134.6	383.5	61	17940	112
HV lines (km)	899.2	350.5	58	11781	112
CE(x,y)	0.72	0.71	0.44	1	112

Table 1: Summary statistics (2011-2015 averages)

PS in Norway 2011-15

Cross-ownership in Norway 2011-15

Peer effects Norway 2011-15

Peer behaviour

Table 4: Peer behavior	$(\xi_{k,k}^t)$
------------------------	-----------------

	2011	2012	2013	2014	2015
Askøy Energi AS Eidefoss AS Follo Nett AS	90.0 98.2 100	87.7 97.9 100	$90.9 \\ 97.3 \\ 100$	$91.7 \\ 94.9 \\ 100$	95.2 92.2 99.7
Nord-Salten Kraft AS NTE Nett AS	88.7 98.4	90.8 97.0	93.4 97.8	94.8 99.7	89.4 100
Nord-Østerdal Kraftlag SA Trøgstad Elverk AS	$\begin{array}{c} 99.9\\94.3\end{array}$	$\begin{array}{c} 100\\ 95.8 \end{array}$	$\begin{array}{c} 100 \\ 94.3 \end{array}$	$\begin{array}{c} 100\\92.6\end{array}$	$\begin{array}{c} 100 \\ 87.6 \end{array}$

Peer effects of Norgesnett merger on connected firms

	ω^M_i	$\tilde{\omega}_i^M$
Norgesnett AS	0.96	0.99
Hafslund Nett AS	0.99	0.98
Rakkestad Energi AS	1.00	0.98
Trøgstad Energi AS	1.00	0.98

positive externality on all firms with $\omega < \tilde{\omega}$

Analysis Norway

Yardstick regulation is effective against collusion, input-mix distortions, end-of-period gaming (ratchet)

Regulation method has become more predictable

- Compact model
- > Stable peer firms
- Stable frontier (since 1994...)
 - > Firms may become profitable by innovation (frontier shift)
 - > Firms may become profitable by strategic mergers (frontier regress)

Empirically 2011-15

> At least one merger had direct positive effects on revenue without any efficiency gains

Merger gains in regulation

CONCLUSIONS

Conclusions

Regulation must signal correct incentives for mergers ex ante

> The current model can be exploited

Our measure of peer effects complements the decomposition

- > Quick calculation to estimate targets (quick wins)
- > Tool for ex post review of mergers (revenue effects)

Policy options

- > Use distorted information (obfuscation) to increase uncertainty
- > Use average-practice methods to limit impact
- > Use sanctions for strategic mergers to decrease gains

Main references

Based on:

Agrell, P.J., Teusch, J. (2018) Strategic behavior under frontier regulation, submitted paper under review.

Background:

Agrell, P.J., Bogetoft, P., (2017). Regulatory Benchmarking: Models, Analyses and Applications . Data Envelopment Analysis Journal, **3(1-2)**, 49–91.

- Agrell, P.J., Bogetoft, P., Grammeltvedt, T.E., (2015). The efficiency of the regulation for horizontal mergers among electricity distribution operators in Norway, In: 2015 12th International Conference on the European Energy Market (EEM), IEEE. pp. 1–5. doi:10.1109/eem.2015.7216685.
- Agrell, P.J., Bogetoft, P., Tind, J., (2005). DEA and dynamic yardstick competition in Scandinavian electricity distribution. *Journal of Productivity Analysis* 23, 173–201.

Bogetoft, P., Wang, D., (2005). Estimating the potential gains from mergers. *Journal of Productivity Analysis* 23, 145–171.

Prof. Per J. AGRELL UC Louvain / CORE 34 voie du roman pays B-1348 Louvain-la-Neuve, BELGIUM per.agrell@uclouvain.be

Teusch, J., (2016). Merger incentives under yardstick competition: A theoretical model. CORE Discussion Paper 2016/37.