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Motivation
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� European electricity markets are structured as zonal markets (in
contrast to nodal pricing)

� Zonal market design can affect power systems operations,
Ehrenmann and Smeers (2005)

� Continental Europe (Germany) leading renewable energy
integration, 82 GW of solar PV power and 108 GW of wind
power

� Questions:

– What are the effects of uncertainty, stemming from renewable
resources, on operations under zonal markets?

– How the performance of the zonal market design and a
centralized nodal design compare to each other under current
integration levels?



Central Western European (CWE) network
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France

Belgium

Switzerland

Netherlands

Germany

Austria

CWE grid model of Hutcheon and Bialek (2013): 7 countries, 679
nodes, 1073 lines



Supply and demand
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� 656 thermal generators: 85 GW NUCLEAR, 40 GW CHP, 99 GW
SLOW, 14 GW FAST and 10 GW AGGREGATED (small)

� 47.3 GW of solar PV power and 51.2 GW of wind power

� Multi-area renewable production and demand with 15’ time
resolution
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Outline
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� Benchmark models: deterministic and stochastic UC

– Asynchronous algorithm for stochastic UC

� European electricity market model

� Policy comparison results and analysis

� Conclusions
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Centralized unit commitment
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Unit
commitment

ISO

Deterministic | Stochastic

Balancing

ISO

Firms
uUCtechnical

information

← Day-ahead Real time →

� Standard in power systems literature

� Deterministic UC models currently used for day-ahead scheduling
in MISO, PJM, CAISO and other systems worldwide

� Stochastic UC model useful for systems with significant
renewable integration, Papavasiliou and Oren (2013)



Solving stochastic UC for the CWE system
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� One scenario subproblem has 444 thousand variables, 539
thousand constraints and 9552 integers

� Certain scenario subproblems can take up to 75 times more
running time than others

– 10’ for easy subproblems – 12 hours for hard subproblems

– Synchronous decomposition schemes not effective

� Idea: use simpler algorithms for which each iteration requires to
evaluate only a subset of subproblems

� Relevant literature: Bertsekas & Tsitsiklis (1989), Tseng, (2001),
Nedić et al., (2001), Kiwiel, (2004), Fercoq & Richtárik, (2013),
Liu et al., (2014)



Dual decomposition

CORE@50 9

SUC : min
p,u,v
w,z

∑

s∈S

πs
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∈ Ds
(

w, z
)

∈ Dwz

wg = ug,s (πsµg,s), zg = vg,s (πsνg,s) ∀g ∈ GSLOW, s ∈ S



Dual decomposition
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Proposed scheme
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Coordinating
Process

Dual
Subproc. s1

Dual
Subproc. θ

Dual
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Recovery 1
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Recovery j
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θ ,

LBk, ul
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Note: µk
θ , ν

k
θ are maintained within Dual Sub-process θ



Standard block-coordinate descent iteration
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� k(θ): current iteration in sub-process θ

� Dual Sub-process θ:

– Evaluates subproblem P2 for scenario θ with current

multipliers µ
k(θ)
θ ,ν

k(θ)
θ

– Evaluates P1 with current full multipliers

µ :=
(

µ
k(s1)
s1

, . . . ,µ
k(θ)
θ , . . . ,µk(sn)

sn

)

ν :=
(

ν
k(s1)
s1

, . . . ,ν
k(θ)
θ , . . . ,νk(sn)

sn

)

– Computes block-coordinate subgradient update on µθ,νθ

� Problem: dual function is never fully evaluated → impossibility
to compute lower bounds



Modified dual iterations
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� Dual Sub-process θ:

– Evaluates subproblem P2 for scenario θ with the current

multipliers µ
k(θ)
θ ,ν

k(θ)
θ → LB

k(θ)
P2(θ)

– Evaluates P1 with delayed multipliers µ̄, ν̄ → LB
k(θ)
P1

µ̄ :=
(

µ
k(s1)−1
s1

, . . . ,µ
k(θ)
θ , . . . ,µk(sn)−1

sn

)

ν̄ :=
(

ν
k(s1)−1
s1

, . . . ,ν
k(θ)
θ , . . . ,νk(sn)−1

sn

)

– Computes block-coordinate subgradient update on µθ,νθ

– Computes lower bound on objective using last
evaluations of P2 subproblems for other scenarios,

Objective ≥ LB
k(θ)
P1 + LB

k(θ)
P2(θ) +

∑

s 6=θ

LB
k(s)−1
P2(s)



Lower bound initialization
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� Certain scenario subproblems can take up to 75 times more than
others to be solved → one scenario can delay the computation
of the first “full” lower bound

� Use a relaxation of P2 to obtain an initial lower bound (not
useful for updating dual multipliers)

� Which relaxation?

– Linear relaxation of P2

– Sequence of OPF problems



Primal recovery
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� Recovering primal candidates (1st stage) from P2 subproblems
→ good quality solutions from first iterations, Ahmed (2013)

� Accumulating large number of primal candidates: prune bad
candidates if possible

– Pruning candidates based on cuts from Angulo et al. (2014)

– Second stage cost non-increasing function of u:
u
i ≥ u

j ⇒ C2(u
i) ≤ C2(u

j), hence

LB(unew) = C1(u
new) + max

j∈J

uj≥unew

C2(u
j)



Running time comparison: CWE system instances
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Model Scenarios Variables Constraints Integers

Determ2R 1 570,432 655,784 9,552
Determ3R 1 636,288 719,213 9,552
Stoch30 30 13,334,400 16,182,180 293,088
Stoch60 60 26,668,800 32,364,360 579,648
Stoch120 120 53,337,600 64,728,720 1,152,768

� Asynchronous SUC implemented in Mosel using the mmjobs
module and the XPress solver

� Lawrence Livermore National Laboratory Sierra cluster: 23,328
cores on 1,944 nodes, 2.8 Ghz, 24 GB/node



Running times comparison: implementation details
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� Using 10 nodes per SUC instance:

– 5 nodes dedicated to dual iterations / 6 sub-processes per node
(subproblem P2 memory requirements)

– 5 nodes dedicated to primal recovery / 12 primal recovery scenario
sub-problems per node

Coordinator

Primal (ED) Solver 1

Primal (ED) Solver 2

Primal (ED) Solver 3

Primal (ED) Solver 4

Primal (ED) Solver 5

Primal (ED) Solver 6

Primal (ED) Solver 7

Primal (ED) Solver 8

Primal (ED) Solver 9

Primal (ED) Solver 10

Primal (ED) Solver 11

Master Node (within Primal Nodes)

Dual (P2-P1) Solver i1

Dual (P2-P1) Solver i2

Dual (P2-P1) Solver i3

Dual (P2-P1) Solver i4

Dual (P2-P1) Solver i5

Dual (P2-P1) Solver i6

Dual Node i

Primal (ED) Solver j1

Primal (ED) Solver j2

Primal (ED) Solver j3

Primal (ED) Solver j4

Primal (ED) Solver j5

Primal (ED) Solver j6

Primal (ED) Solver j7

Primal (ED) Solver j8

Primal (ED) Solver j9

Primal (ED) Solver j10

Primal (ED) Solver j11

Primal (ED) Solver j12

Primal Node j



Running times comparison
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Solution statistics over 8 instances (day types).

Model Nodes Running time [hours] Worst final gap [%]

Determ2R 1 1.9 (0.6 – 4.2) 0.95
Determ3R 1 ≥ 9.4 (6.3 – 10.0) 4.91

Stoch301 10 1.1 (0.7 – 2.2) 0.93
Stoch30i2 10 0.8 (0.3 – 1.8) 1.00

Stoch601 10 3.2 (1.1 – 8.4) 1.00
Stoch60i2 10 1.5 (0.6 – 4.7) 0.97

Stoch1201 10 ≥ 6.1 (1.6 – 10.0) 1.68
Stoch120i2 10 ≥ 3.0 (1.4 – 10.0) 1.07

Termination criteria: 1% optimality or 10 hours wall-time.
1 Dual initialization using linear relaxation of P2.
2 Dual initialization using sequential OPF.



Running times comparison: optimality vs. wall-time
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Solution statistics over 8 instances (day types).

Model Worst gap [%]
1 hour 2 hours 4 hours 8 hours

Stoch30 7.59 1.02 0.93 –
Stoch30i 1.90 1.00 – –
Stoch60 23.00 5.32 5.22 4.50
Stoch60i 4.60 1.57 1.03 0.97
Stoch120 70.39 31.66 4.61 1.87
Stoch120i 46.69 27.00 1.42 1.07

� Lower bound initialization using sequential OPF observed to be
very effective, sometimes avoiding to solve P2 for hard scenarios

� Asynchronous SUC algorithm capable of achieving acceptable
optimality gaps within running time of deterministic UC



Room for improvement: evaluation of primal candidates
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Bounds and primal candidates.

Stoch120i, 5 dual – 5 primal nodes, summer weekday (worst case).

� Pruning of primal candidates is not effective: discards less than 1% of
candidates

� Valuable computational resources spent in detailed evaluation of
sub-optimal candidates



European electricity market model
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Market Coupling (MC)
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ATC
computation

TSOs

Zonal energy
auction

Power Exchanges

Commitment
of reserves and
nominations

TSOs

Re-dispatch
and balancing

TSOs

Firms

ATC ∆QMC

uMC

∆QMC

uR

bids nominations

← Day-ahead Real time →

� Previous work: Ehrenmann and Smeers (2005), Leuthold et al.
(2009), van der Weijde and Hobbs (2011), Oggioni and Smeers
(2011), (2012), Kunz (2013)



Main differences between MC and UC
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Market Coupling (MC) Unit Commitment (UC)

PX(s), TSO(s) ISO
(partial system knowledge) (complete system knowledge)

Exchange Power pool

Sequential market clearing Simultaneous market clearing

Zonal energy clearing Nodal energy clearing
(one price per zone) (one price per node)

Respecting day-ahead zonal
Fully coordinated balancing

net positions on real time



Zonal vs nodal pricing in the CWE network
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Policy comparison results and analysis
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Simulation setting
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� Commitment of NUCLEAR and CHP decided prior to day-ahead

� Commitment of SLOW units decided in day-ahead, commitment of
FAST units decided in real time. Production of all units decided on real
time.

� 8 day types: 4 seasons × weekdays/weekends

� Real time operation cost estimated using 120 Monte Carlo samples

� Comparing performance of 4 policies

– Market coupling respecting net positions, MCNetPos

– Market coupling free international re-dispatch, MCFree

– Deterministic unit commitment, DetermUC

– Stochastic unit commitment, StochUC



Policy comparison: expected operation costs
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Expected policy costs and efficiency losses with respect to deterministic UC

Policy
Expected cost Efficiency Efficiency losses
[MMe/d] losses [%] [MMe/year]

MCNetPos 30.42 6.2 650

MCFree 29.45 2.8 294

Deterministic UC 28.64 – –

Stochastic UC 28.49 –0.5 –55

Perf. Foresight 28.32 –1.1 117

� Small efficiency gains of stochastic UC compared to efficiency
losses due to market design

� Congestion management costs for Germany during 2015:
688MMe, ENTSO-E



Policy comparison: cost composition weekdays
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Deterministic UC vs. MCFree
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� In day-ahead, deterministic UC and MCFree commit similar
amounts of SLOW capacity, but in different nodes

� In real time, MCFree resorts to more FAST generators, including
very expensive units
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Deterministic UC vs. MCFree
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MCFree day-ahead schedule for spring weekday at 17:00–18:00

D-100

0–50 e/MWh
≥ 50 e/MWh

[0,50)% load
[50,100)% load

100% load
overloaded



Deterministic UC vs. MCFree
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MCFree day-ahead schedule for spring weekday at 17:00–18:00
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Deterministic UC vs. MCFree
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MCFree real-time operation for a sample of spring weekday at 17:30–17:45
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Deterministic UC vs. MCFree
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� Infeasibility of day-ahead schedules due to congestion is persistent
across periods and day types

� Cheap SLOW generators are re-dispatched down to their technical
minimum, while expensive FAST generators are re-dispatched up →

increase in production cost of FAST units
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MCFree vs. MCNetPos
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Zonal net position adjustments in real time with respect to day-ahead zonal

net positions
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MCFree vs. MCNetPos
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� Adjustment of net positions is driven by renewable forecast error for
DE/AT/LX, limited by zonal net demand and day-ahead net position

� Fully coordinated balancing (MCFree) performs better than zonal
balancing (MCNetPos): sharing of shortage and excess of renewable
supply across zones
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Conclusions
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� Efficiency losses in the European electricity market are due to

1. suboptimal day-ahead commitment (MCFree – DetermUC,
2.8%)

2. uncoordinated balancing (MCNetPos – MCFree, 3.4%)

� Efficiency losses of type 1 can be strengthened by changing
patterns in power flows due to renewable integration

� Efficiency losses of type 2

– Directly related to renewable forecast errors → higher
integration levels would imply larger efficiency losses

– Present in both European and in wide US interconnections

– They can be corrected through coordinated balancing, 50
Hertz et al. (2014), Y. Makarov et al. (2010)



Perspectives
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� Extensions of asynchronous algorithm

– Pruning and scoring primal candidates

– Dynamical queue management for dual and primal processes

– Multi-stage stochastic UC

� Extensions of present European electricity market model

– Flow-based MC model

– Intraday market
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Thank you

Contact:

Ignacio Aravena, ignacio.aravena@uclouvain.be
http://sites.google.com/site/iaravenasolis/

Anthony Papavasiliou, anthony.papavasiliou@uclouvain.be
http://perso.uclouvain.be/anthony.papavasiliou/
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Box plot, Gaussian standard distribution
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Q1 Q3

IQR

Median

Q3 + 1.5 × IQRQ1  1.5 × IQR

0.6745 0.6745 2.6982.698

50%24.65% 24.65%

68.27% 15.73%15.73%

4 3 2 1 0 1 32 4

4 3 2 1 0 1 32 4

4 3 2 1 0 1 32 4

Wikipedia. Box plot. http://en.wikipedia.org/wiki/Box plot



Available Transfer Capacity computation
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ATC Energy Reserves Balancing

TTC+
(a,b),τ := max Cross border flow a → b

s.t. Optimal power flow constraints, τ
Base case exchange on other borders, τ
Capacity margin for reserves for a, b

ATC+
(a,b),τ = TTC+

(a,b),τ − TRM

� ATC+
(a,b),τ : Preliminary ATC from zone a to zone b for hour τ

� Computed using the full network, internal and cross border lines
thermal ratings, and security criteria

� Checked for simultaneous feasibility, TenneT (2014)

� Problem based on UCTE (2004)



Day-ahead energy market clearing
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ATC Energy Reserves Balancing

max Welfare
s.t. Strong duality constraint

Zonal (transportation) network constraints
Bid acceptance/rejection constraints
Surplus non-negativity constraints

FR CH

BE

DE/AT/LX

NL

� Hourly resolution

� Demand and renewable producers submitting continuous bids

� Thermal generators modeled as submitting block bids

� Model adapted from MILP model of Madani and Van Vyve
(2014)



Commitment of reserves and nominations
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ATC Energy Reserves Balancing

min Operation cost for zone a

s.t. Unit commitment constraints
Reserves constraints
Zone a net position and minimum commitment for

SLOW generators from day-ahead energy market

� Zonal reserves, no network, 15’ resolution, hourly commitment

� Three types of reserves: FCR (available in 30”, spinning),
automatic FRR (available in 7.5’, spinning) and manual FRR
(available in 15’)

� Based on 50 Hertz et al. (2014) and ENTSO-E (2014)



Re-dispatch and balancing in real time
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ATC Energy Reserves Balancing

min Total operation cost
s.t. Unit commitment constraints for FAST units

Real (nodal) network constraints
Renewable energy supply realization
Fixed net positions on zones and SLOW commitment

� 15’ resolution dispatch, hourly commitment for FAST units

� Simulating over several samples of renewable supply

� Deviations from day-ahead net positions penalized at the
maximum marginal cost of any generator in the system

� Based on Oggioni et al. (2012)
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