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Electric Power Systems Problems

e Key Optimization Problems in power system operations
from System perspective:

Generation Generation Day-Ahead Real-Time

Unit Economic
Commitment Dispatch

Transmission Transmission
Expansion Maintenance

! 5 L i >

— Real-Time Economic Dispatch:
e Hourly bidding and ISO 5, 15 min dispatch

— Day-Ahead Unit Commitment:
e A day prior to operation to determine unit commitment

— Yearly generation/transmission maintenance:
— Long-term generation/transmission expansion:



Challenge: Renewable Integration

e Renewable Energy Integration in Western Interconnection

Renewable Resources Nameplate Capacity by Year
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— WECC'’s Largest generation addition in 2014: 3,400 MW utility-scale solar
— Behind-the-meter solar at least 3,200 MW

— Since 2010, nearly 10,000 MW wind and 8,000 MW solar added



Challenge: Supply/Demand Uncertainty

Renewable Integration

load forecast

net load (GW)

net load forecast
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[Ruiz, Philbrick 10]

Supply Variation:
Wind/Solar Power Penetration
Behind-the-Meter installation

Net Load Uncertainty
Can be Huge!



Challenge: Unplanned Outages

 Unplanned Generator Outages:

Unplanned Outages of Generating Units
Reported in Both 2013 and 2014

5,000 Median Unplanned Outages
Per Unit Per Year, 2013-2014
4,000
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 Unplanned Transmission Outages:

Distribution of Automatic Transmission Outages by Cause, 2010-2014
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Challenge: Dynamic Decision Making

e Uncertainty in Dynamic Decision Making

Info: Supply costs, load forecast Info: Unit commit, realized load
Decision: which units to commit Uncertainty Decision: generation level

Goal: meet demand w. min cost realized Goal: min costs meet demand
Constraints: physical, security Constraints: physical, security
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| Milestones for 3:00 — 3:15 (Market 1)

I T-75: Base schedules and energy bids due (Resources) I
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'I T-40: Updated base schedules are submitted if necessary (Entity SC) I
I T-20: E-tagging deadline EIM‘Market I
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I T-37.5: Start of Market 1 optimization I
T-45: Results of sufficiency test published
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& Clibminlzo Smssss—se 00 omessa. 0 s

'—-—-——-—---—-----—-—-—_



Challenge: Non-convex Models

* Non-convexity: Discrete nature
— commitment decisions n

— Transmission line/Capacitor switching decisions Modeled

— Maintenance decisions  As0-1
variables

— Generation/transmission expansion decisions

—

* Non-convexity: Continuous nature

— Power Flow Physics: non-convex quadratics
— Control devices: FACTS — Convexify

— Hydrology: water flow vs power




Outline

e Some projects on dealing with Uncertainty
1. Stochastic dual dynamic programming with binary
recourse for generation expansion planning
2. Multistage robust optimization with decision rule
for unit commitment

e Some project on dealing with Non-convexity:
3. Optimal Power Flow (OPF) and Optimal
Transmission Switching (OTS) problem




Act 1

Nested Decomposition and SDDP with Binary Recourse




Multistage Stochastic Integer Program

Extensive form of an MSIP:

min {Z Prnfn(TnsUn) @ (Tam)s Tnitn) € Xp Vn € T}

mn ayn

neT

State variables: {z.}.em binary (key assumption)

Local variables: {v»}ner mixed integer
Assumptions:
* fa(xn, Yn) linearin xp, y,
e X,, compact, linear mixed-integer set
e Complete recourse




A Key Reformulation

e A reformulation of MSIP:

min anfn($n>yn)

LTnYn,Zn
" ne7J

s.t. VneT
(Zn, Tn,Yn) € Xy,

Zn = Lg(n)

z € [0,1]°
r, € {0,1}%




Dynamic Programming Recursion

e Dynamic programming recursion: at node n

Qn(xa(n)) = min fn(xnayn) + Z QRQO(mn)

i mec(n)
s.t. (zn, Tn,yn) € Xy
Zn = Ta(n)
z, € [0,1]
r, € {0,1}°

 Nested decomposition algorithm:

— Approximate cost-to-go ¥ (x,,) < Y Grm @ ()
— Iteratively strengthen ¥} by linear cuts




Nested Decomposition Algorithm

In iterations 1

e FORWARD:
- solve the lower approximation Pp(x5(n),%n)

Q (xa{n Iu"-(f'n) — ITIII'I ff’(x":yﬂ}+w:-1(x”)

Xns¥n:Zn

s.t. (2, Xn, ¥n) € Xa
Zn —J‘f;.-[ . xn € {0,1}°
where ¥} (x,) = max{L,, £%(x,) : k < i—1}, £%(-) are linear cuts
- upper bound
e BACKWARD:

- solve P,,(x5, 1) (or relaxation) and collect cut coefficients
(Vi, T) for all m € C(n)

- SE:I: E:'l(x") — ZmEC[n] Qnm(v:n + (?r:ﬂ)—rx”]' and
Un' (%) = max{Pn(xa), €' (xa) }

- lower bound




Nested Decomposition Algorithm
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iteration 1

t=1 _
FORWARD:

e Independent
sampling across
stages

e Compute candidate
solutions

BACKWARD:

¢ Evaluate candidate

\ e Obtain statistical UB

solution at every
outcome

Q(x1) e Generate cuts

T

e Obtain exact LB




Properties of Linear Cuts

AN -
Recall (v}, m},) is collected from solving

Q(Xsmy YY) = min  fo(xn,¥n) + Y5 (Xn)

Xn:¥n+Zn

s.t.  (2Zn,Xn, ¥n) € X

£p = }{;{n}j Xn = {U? 1}d

or Its relaxation, we say the cut Is
o Valid. Qn(Xa(n)) = v+ (mh) " Xa(n), V¥ Xa(n) € {0,1}¢

e Tight. Q' (x oy Un ) = vp +(mh) "Xl

e Finite. only produce finitely many different (L»fj,';1 !




Convergence

e Convergence is what you would expect. However, a rigorous
proof is not entirely trivial for Theorem 3.




e Benders' cut (Benders, 1962) (valid but not tight)

Ei :’:n — Z QHmVLPJ‘|‘ Z '-Tnm Lpi (XH—X)

meC(n) meCn

e Integer optimality cut (Laporte and Louveaux, 1903) (valid and tight)

fi:(xn}:(‘-_’:;ﬂ_f-n) Z Xnj — Z Xnj — |S(x )| ‘|“7‘£+1

€5(x, JES(x;

where S(x;) ={j: x,; =1} and 7,7 = = D _mec(n) Qnmﬂi[x;{n}a Ua)




Our Proposal: Lagrangian Cuts

In the BACKWARD step, Ym € C(n), we solve

; I'I;il'lz fm(xm,ym) + wﬁ_l(xm) _ TT;(Em o }:’:]}

s.t. (Zm,XmsYm) € Xm
Zm € [0,1]¢
Xm € {0,1}°

=max L (mm)
Tm

e Lagrangian cut: let v:&

i i iy | i
En(xﬂ) — Z qnmvrl;:G’ + Z ‘:f'nm(ﬂ:l;r{;’) (xﬂ_xn)

meC(n) meCn




Computational Results

T # branch cuts best LE # iter stat. UB gap time
($MM) ($MM) (hrs)

B +1 2818.8 237 2840.6 0.77% 2.24

SB + | 2818.9 T 2855.8 1.20% 0.60

6 50 B4 L 2818.9 63 2848.5 1.04% 0.96
SB +L 2818.9 56 28490.2 1.06% 0.70

SB+1+4+L 2818.9 50 2820.7 0.06% 1.03

B +1 3564.5 230 3614.8 1.30% 8.10

SB + | 3564.4 111 3588.0 0.68% 1.08

7 50 B 4L 3564.5 100 3560.1 0.13% 2.48
SB +L 3564.5 66 3576.9 0.35% 2.37

SB+1+L 3564.5 60 3577.6 0.37% 1.95

B +1 4150.4 340 4254.2 2.23% 7.78

SB + | 41590.4 152 4207.5 1.14% 1.53

8 30 B 4L 4159.6 147 A227.7 1.61% 4.00
SB + L 4150.6 g7 4218.9 1.41% 2.55

SBE+1+L 4150.6 103 4278.0 2.77% 2.72

B + 1 5058.0 520 5081.5 0.46% 10.85

SB + | H058.6 230 2102.0 0.85% 2.57

0 30 B+4L 5058.7 218 5108.6 0.98% 8.01
SB + L 5058.7 120 5145.3 1.68% 2.06

SE+1+4+L 5058.9 119 5070.4 0.40% 4.30
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Act 2

Multistage Robust Unit Commitment: Decision rules for

Uncertainty




Act 2: Multistage Robust UC

e Motivation
* Model, Affine Policy, and Algorithm
e Computational Results:
Reasonable computation time 2718-bus

Near-optimal performance
Advantage over two-stage models

Average performance




Recent Works on Robust UC and ED

 Robust Optimization for unit commitment

* Adaptive two-stage robust SCUC models
— [Jiang et. al. 2012], [Zhao, Zeng 2012],
— [Bertsimas, Litvinov, Sun, Zhao, Zheng 2013] (joint w. ISO-NE)
* RO for security optimization
— [Street et. al. 2011], [Wang et. al. 2013]
e Unifying RO with Stochastic UC
— [Wang et. al. 2013]
* New types uncertainty set
— [Guan Wang 2014] [Lorca Sun 2014] [Chen et. al. 2015]

* Robust Optimization for economic dispatch
e AGC control (two-stage: dispatch + AGC)
— [Zheng et. al. 2012]

» Affine policy (dispatch as linear function of total load)
— [Jabr 2013][Warrington2012,2013]




Issues with Two-Stage Robust UC

 Asimple two-bus two-period example:

fmax —

Demand uncertainty sets:
D' = {(12,12)},
D? = {(d3,d%):d% + d} = 25,d}? € [10,15]}

\pA—12RA 1 pB—IZRB—l

e Claim: Two-stage robust UC is feasible
— UC solution: (x5, x5) = (1,1) fort = 1,2
— Feasible dispatch solution:
4 1 2 32 1 2 42
» pi(d) = 12 + 2 (df — 12.5), pp(d) = 12 — = (df — 12.5)

|+ PA(@) =125 +2(df —12.5), pj(d) = 12.5 — 2 (dj — 12.5)




Capture Multistage Nature is Critical

e Can we find a policy p(+) that does not look into
the future? i.e. pt(dt), p?(d?, d?)?

— Because real-time dispatch cannot depend on future

* No feasible non-anticipative policy exists!

— No feasible p! s.t. for any d? € D? there exists p?
— If pX € [11,12]: p5 < 13, impossible to satisfy d?> = (15,10)
— If ps € [12,13]: p4 < 13, impossible to satisfy d* = (10,15)

e Bottleneck: Ramping constraint




Multistage Robust UC

w,ﬁ};(_) {ZZ (Gixl + Siul) maxZZ(‘pl

teT 1eEN, teT ieN,
s.T.

constraints for . w. v

prin gt < pt(dlthy < pmaz .t VdeD,ieN, teT

— RD;zt — SDt pt(dH- pi =t (d"™) < RU2IT + SUu
VdeD.ieNyg, teT

— fmar < g (BP t(dlth — pd df) fmas VdeD. teT.leN,

ity =" d VdeD. teT

‘!.ENg jENd

Notation: d'l = (d'.....d")



Affine Multistage Robust UC

* Tractable alternative for p(-):

teT ieNy teT ieNyg

m,ufﬂ,iﬂ,w{zz OHMH%ZZG(M >3 Wi )}

s.t.
constraints for @, u, v

pm“<w+ Z ZWUd <ptyt YdeD,ieN,,
t} JEN,




Simplified Affine Policies

(L2 5 a5 6517 s » 10 m » 15 14 15 2 [ANNSNNSNSNEN o0 o o]

Temporal Aggregation

Spatial Aggregation

General affine policy:

Simpler information basis:

All loads aggregated:

Loads and time periods aggregated:




Solution Method

e Dualization approach does not work:
— Traditionally, robust constraints are dualized
— Resulting problem is too large for power systems

* Constraint generation makes sense:

prtel S w4+ Wi Y ds <pi*tal YdeED,i€Ng teT
FEN

e However, naive CG also does not work




Solution Method

e Valid inequalities for x and specific d’s for ramping,
generating limits, and line flow

Fixing binary decisions and finding cuts by CG with an LP
master

Iteratively improving policy structure (e.g. W; = W};)
with approximate warm-start (not solving W; fully)

Exploiting structure of special policy form: e.g. pre-
computing all needed constraints for ramping and
generation limit constraints for W;-policy.




Computational Study

e How good is the proposed algorithm?
— Effectiveness of various algorithmic improvements

e How good is the simplified affine policy?
— Compared to the “true” multi-stage robust UC

e Why should we use multi-stage formulation?
— Worst case infeasibility of two-stage robust UC
— Managing Ramping capability

e How good is affine UC “on average”?
— Rolling-horizon Monte-Carlo simulation
— Average performance in cost, std, reliability




How Good is the Algorithm?

Solution time (s) for three test systems using W ;; policy:

System |[I'=025|1'=05 |1 =1 |1 =2 I'=4
30 bus bs 3s 8s bs 20s (inf)
118 bus 64s 47s 63s 178s
2718 bus 3.6h 3.2h 2.3h 2.0h | 0.4h (inf)

Note: “inf" indicates that the problem is infeasible

MIP optimality gap used for 30, 118, 2718 bus systems: 0.1%, 0.1%, 1%




How Good is the Simplified Affine Policy?

e How good is the simplified affine policy?

l Simplified affine multistage robust UC
t]Y =
pit(d[ ]) =W + Wiy ZjeNd djt
T General affine multistage robust UC
t]\ = t
Pit(d[ ]) = Wi + D=1 ZjENd Witjsdjs
V Fully-adaptive multistage robust UC Pt (d[t])

>
p)

ptimality ga

Real o

=
50
>,
=
=
E
=
O
=
2
=
N

—t+= Two-stage robust UC pit(d)

<€

=t— Lower bound on two-stage robust UC

v




How Good is the Simplified Affine Policy?

Table : Opt. gap under different policy structures, for the 118 bus system.

(ngﬂ‘ HT'} nd'} L)

I'=0.5

I'=1

I'=2

I'=4

(10,1,1,0)
(21,1,1,0)
(31,1,1,0)
(54,1,1,0)
(54,4,1,0)
(54,24,1,0)

0.03%
0.03%
0.02%
0.02%
0.02%
0.02%

0.06%
0.05%
0.04%
0.04%
0.03%
0.03%

0.11%
0.11%
0.10%
0.10%
0.10%
0.07%

0.95%
0.77%
0.74%
0.67%
0.52%
0.35%

Table : Opt. gap for the 2718 bus system under the “IW;;" policy.

(ng,nt,nq, L)

['=0.25

['=0.5

I'=1

I'=1.5

['=2

(289,1,1,0)
(289,24,1,0)

0.09%
0.07%

0.22%
0.11%

0.42%
0.25%

0.55%
0.35%

1.05%
0.53%




Why Multistage? Worst-Case

* Worst-case (USS) of multistage robust dispatch under two-stage and
Multistage UC solutions for the 2718-bus system.

I'=0.5 I'=1 '=15 =2 =3

Affine multistage UC solutions

Total Cost 9,445,069 9,596,788 9,746,685 9,905,527 10,234,459
Penalty 0 0 0 0 0

Two-stage UC solutions

Total Cost 9,505,651 9,745.8%0 10,183,433 10,975,403 12,864,719
Penalty 96,313 224952 591,661 1,165,324 2,703,522

Rel Diff 0.64% 1.55% 4.49% 10.80% 25.70%




How Good is Affine UC on Average?

e Average performance over independent demand

Affine multistage robust UC with policy-enforcement robust ED

r

0.25

(05 )

1

1.5

2

3

Cost Avg (%)
Cost Std ($)
Penalty Cost Avg ($)
Penalty Freq Avg

9,307,528
113,725
03,552
10.00%

9,319,396
15,970
3497

\_1.47%

0,342,754 9,360,359 9,379,464 9,442 858

12,828
727
0.40%

12,509
61
0.01%

12,363
5
0.00%

12,092
0
0.00%

Two-stage robust UC with look-ahead ED

0.46%

r

0.25

0.5

1

1.5

2

7

Cost Avg (%)
Cost Std (%)
Penalty Cost Avg ($)
Penalty Freq Avg

9,308,109 9,456,500 9,408,732 9,383,560 9,407,290

03,470
80,127
9.93%

195,774
152,637
12.26%

173,884
98,113
7.80%

144,608
66,801
5.11%

162,469
82 864
5.57%

9,362,379

45 584
6,103

\_0.37% /

Deterministic UC with reserve and look-ahead ED 0-95%

Reserve

2.5%

5%

10%

15%

( 20%

N

30%

Cost Avg (%)

0,556,540 0.575.446 0,424,678 0,561,024 |9,408,173

0,411,741

Cost Std (%)
Penalty Cost Avg ($)
Penalty Freq Avg

261,464
254,627
15.93%

288,777
271,672
13.37%

121,122
119,127
14.31%

196,354
248 658
18.16%

92,268
83,038

\10.03% /

69,050
51,907
7.22%




How Good is Affine UC on Average?

e Average performance over wind power and persistent demand

Affine multistage robust UC with policy-enforcement robust ED

r

0.25 (

0.5

1

1.5

2

3

Cost Avg ($)
Cost Std ($)

Penalty Cost Avg ($)

Penalty Freq Avg

10,996,931 9,459,785
3,665,301 2,007,317

18.84%

2,679,299 1,110,032

14.44%

8,502,923
490,457
101,234

. 1.67% J

8.581,532 8,646,665 9,415,603

466,999
81,834
0.47%

424,801
27,344
0.18%

458,865
218
0.01%

Two-stage robust UC with look-ahead ED

1.23%

r

0.25 0.5 1 1.5

2N

3

Cost Avg (8)
Cost Std ($)

10,390,214 11,365,568 8,734,840 8.863,075

Penalty Cost Avg ($)
Penalty Freq Avg

1,831,279
2,064,045
12.73%

1,059,427 620,301

1,032,109
3.68%

380,451
7.37%

802,441
490,562
5.19%

8,609,160
522,881

105,681
\2.07T%

8,047,959
703,447
443,401

2.66%

Deterministic UC with reserve and look-ahead ED

24.52%

Reserve

2.5%

5%

10%

15%

20%

3070 )

Cost Avg (8)
Cost Std ($)
Penalty Cost Avg ($)
Penalty Freq Avg

13,186,705 14,272,477 13,110,030 13,617,194 11,879,817

5,557,309 7,023,964
4,905,635 6,003,861

5,506,030 6,082,173 4,095,780

30.45%

29.94%

4,827,766
33.00%

5,334,746 3,578,986

32.43%

23.61%

11,248,546
3,113,902
2,912,186
_ 15.03%
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Act 3

Optimal Power Flow (OPF) and Optimal Transmission
Switching (OTS) problem: Fast Convexification and Cutting

Plane Method to deal with non-convexity




AC Optimal Power Flow

Data:
e Network:

Bus 14 N - (B, ﬁ)
\Lmd Load at bus i:

P, ¢

Bus 9 Generator at bus i:

min ,.max

Bus 7 Generator [p?) . p? ]

4! @'1' [gin | gmax]

Bus 8 Voltage bounds at bus i:

Bus 4 [V_min V_max]
7 'y Vg

|
@,ﬁ Network line admittance:
Bus 3
i

(Gij, Bij) i jyer

Line flow limit:

Si)




AC OPF Formulation: Variables and Objective

Variables:

1. Active and reactive power at generator i: (pf, ng )
2. Active and reactive power flow on line (¢,7): (pij, ¢i;)

3. Complex voltage at bus i: V; = |V;|(cos8; +isinb;) = e; +if;

Objective:

Usually a separable increasing function.




AC OPF Formulation: Constraints

(active flow balance)
(reactive flow balance)

(apparent flow limit)
(active power limits)

(reactive power limits)

Power flow equations and voltage bounds in polar coordinates

pij = —Gij|Vil? + G| Vil|Vj| cos(0; — 0;) + By;|Vi|[V; | sin(6; — 0;)
gij = BilVil* = By |Vil|[V| cos(0: — 6;) + Gi;|Vi|[V| sin(6; — 6;)
V, <V <V

Power flow equations and voltage bounds in rectangular coordinates

pij = —Gij(ef + f7) + Gij(eie; + fifj) — Bij(eifj — e fi)
Gij = Bij(ef + f7) — Bijleie; + fifi) — Gijleif; — €5 fi)
Vi<e2+f2< V?




AC OPF Reformulation

* Introduce Hermitian matrix X = (e + if)(e + if)":
pij = —Gij Xy + Gy R(Xi5) + Bi;Z(X5)
¢ij = Bij Xii — BijR(Xy;) + Gi;T(Xi5)
Vi< Xy < V?
X 1s hermitian

X >0
rank(X) =1

e Standard SDP relaxation: Ignore rank constraint



Recent Literature on OPF

Local solvers by Newton-Raphson and Interior-Point methods

Convex relaxations using semidefinite programming (SDP) and Lasserre
hierarchy: (Lavaei and Low, 2012; Madani et. al., 2013; Zhang and Tse, 2012;
Lavaei et al., 2014, Molzahn et al. 2013, Molzahn and Hiskens, 2014, Chen
et al. 2015)

Second order cone program (SOCP) relaxation: (Jabr 2006, Hijazi et al.,
2014)

Approximate LPs with guaranteed bounds for the AC-OPF problem on
graphs with bounded tree-width (Bienstock and Munoz, 2015)

Global optimal solutions based on branch-and-bound (Phan, 2012)




Non-Convexities in SOCP reformulation

Change of variables:

2 2y
(ef +17) = ci Non-convex quadratic mapping:
(eiej + £ifj) = ¢ (ei,fi, ej;fj) = (Ciis Gjjs Cijs Sij)
(eif' — fiej) —  Sij- is not injective (so not invertible anywhere).

Surface of SOCP cone
within boundsonc, s

Angle sum to 0 (KVL)

l Non-convexity modeled: l Non-convexity NOT modeled:

i What we should have:
02 _|_ 82 — C.] Cl

ii~jj
2 (igyecbij =0




Relaxation of Surface of Cone

e Surface of SOCP cone: cl-z- + Sl- = cl]lc”
— One direction is convex: c + SU < ci]lc”

— Other direction is reverse convex:

f(ClJ'SlJ) JC +Sl] = «/ i]l ]l] g(cu' j)

f IS convex, g IS concave

e Overestimate of f and underestimate of g by hyperplanes

* Angle-sum-to-zero constraints:
— Arctangent envelopes
— Trigonometric reformulation
— SDP separation



Arctangent Envelopes

1. For each edge (i,7), we want to enforce the arctan constraint for x;; = 1:

AT = {(Cz’j,Sz‘j,@ij) c R3: Qij — arctan (Sﬂ) ,(C@'j,Sij) < [Qijaéij] X [§z‘ja§ij]}

Cij

2. Outer approximation of the above set by 4 linear inequalities: Need to
solve four simple global optimization problems to obtain these inequalities.




Cycle Constraints

For a cycle C' with all edges on, instead of satisfying:

We approximate “angles sum to zero over the cycle” by the following relaxation:

Z 0;j = 2wk, for some k € Z. (1)
(i,5)€C

We enforce (1) over cycles in a cycle basis (instead of all cycles).

Condition (1) is equivalent to:

Cycle constraint:  cos( Z 0:;) = 1. (2)
(i,5)eC
Cycle constraint (2) can be reformulated as a degree |C| homogeneous poly-
nomial po =0 in Sij and Cij for (z,j) e C.



3-Cyle, 4-Cycle, and Larger Cycles

e 3-cycle:

For a 3-cycle: cos(012 + fo3 + 031) = 1 can be written as

$12€33 + C23831 + S23¢31 = 0

C12C33 — C23C31 + S23531 = 0.

e 4-cycle:
For a 4-cycle: cos(012 + 0oz + 034 + 041) = 1 can be written as

$12C34 + C12834 + S23C41 + C23541 = 0

C12C34 — 512534 T C23C41 — 523541 = 0.

e Larger-cycle: o
o Olg —— 01345 oy
Decomposition N |
| o123 01234 |
o2 '\\\\\ | ._//;bett
N,



SDP Separation

Given a solution (p*, ¢*,c*, s*) of SOCP relaxation,

1. If there exists a matrix W* = 0, s.t. (c¢*, s*, W*) satisfies:

Cij= Wfij + Wiljf (Z,j) e L
cii= Wii + Wiy i € B,

where i =i+ |B| and j' = j + |B],
then (c*, s*, W*) is feasible for SDP relaxation.

2. Otherwise, we can separate z = (c¢*, s*) from the following SDP set S:
S = {z cRACI . qW e RAC2AC gt — 5 4 A e W =0VIe L, W = 0}
by solving a small SDP over each cycle C' in a cycle basis,

which produces a linear constraint o’z < 0 to be added to SOCP relax-
ation.



Our Strategy for Solving AC-OPF

e Workhorse: SOCP relaxation for fast computation

e Strengthen SOCP relaxation for key non-convexities:
— Type 1: Characterize convex hull and linear outer envelope
— Type 2: Three approaches to convexify KVL:

* Cycle constraints: polynomial equations = McCormick Linearization
e Arctangent envelope: Linear upper/lower approximation
e SDP separation: Lift-and-proiect

%gap | Time (s)
 Results: SOCP | 043 | 262

— |EEE instances (Easy): SOCP_SCBIS g'gi ﬁgg'gl

Plain SOCP | SOCP with Cuts SDP
%gap | time | %gap time | %gap time
— NESTA (Hard): Typical | 5.14 | 1.97 | 0.56 | 454.38 | 1.15 | 817.31

Congested | 9.83 | 3.27 | 1.15| 393.09 | 3.76 | 631.24
Small Angle | 5.91 | 2.53 1.13 | 559.74 | 3.53 | 979.63
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Some Concluding Remarks

e Significant challenges:
— AC Optimal Switching Problem (up to 300-bus)
— AC OPF Global Optimization (up to 3375-bus)
— Multiple-phase AC OPF (need new techniques)
— Robust UC with AC OPF
— Multistage stochastic UC

— Sensor-driven real-time operation and maintenance
scheduling

e Many more challenging computational problems!

* “Bridging the Gap” between OR and Engineering
is so important!



Happy Birthday to CORE!

Andy Sun
ISYE @ Georgia Tech
andy.sun@isye.gatech.edu
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