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Solving Large-Scale Optimization Problems 
under Uncertainty and Non-Convexity in 

Electric Power Systems 



Electric Power Systems Problems 

• Key Optimization Problems in power system operations 
from System perspective: 
 
 
 
 

 
– Real-Time Economic Dispatch: 

• Hourly bidding and ISO 5, 15 min dispatch 
– Day-Ahead Unit Commitment: 

• A day prior to operation to determine unit commitment 
– Yearly generation/transmission maintenance: 
– Long-term generation/transmission expansion: 

Real-Time 
Economic 
Dispatch 

Day-Ahead 
Unit 

Commitment 

Generation 
Transmission 
Maintenance 

Generation 
Transmission 

Expansion 

15 – 25 years 1 mon – 1 year 24 hours 5 – 15 mins 



Challenge: Renewable Integration 

• Renewable Energy Integration in Western Interconnection 
 
 
 
 
 
 
 
 
– WECC’s Largest generation addition in 2014: 3,400 MW utility-scale solar 
– Behind-the-meter solar at least 3,200 MW 
– Since 2010, nearly 10,000 MW wind and 8,000 MW solar added 

 

 
 



Challenge: Supply/Demand Uncertainty 

• Renewable Integration 

 
 

Supply Variation:  
Wind/Solar Power Penetration 
Behind-the-Meter installation 

[Ruiz, Philbrick 10] 

Net Load Uncertainty  
Can be Huge! 



Challenge: Unplanned Outages 
• Unplanned Generator Outages: 

 
 
 
 
 

• Unplanned Transmission Outages: 

Lack of monitoring 
Entails high economic  
Cost and threaten  
system security 

Environmental & Weather: 558/1471=38%  

Unknown causes: 425/1471 = 29%! 



Challenge: Dynamic Decision Making 

• Uncertainty in Dynamic Decision Making 
 
 
 
 
 
– Wind/solar rapid changes 
– Limited ramping  

0 -12 

Info: Supply costs, load forecast 
Decision: which units to commit 
Goal: meet demand w. min cost 
Constraints: physical, security 

Hour 

Day-ahead UC 

Info: Unit commit, realized load  
Decision: generation level 
Goal: min costs meet demand 
Constraints: physical, security 

Real-time Dispatch 

Uncertainty 
realized 



Challenge: Non-convex Models 

• Non-convexity: Discrete nature 
– commitment decisions 
– Transmission line/Capacitor switching decisions 
– Maintenance decisions 
– Generation/transmission expansion decisions 

• Non-convexity: Continuous nature 
– Power Flow Physics: non-convex quadratics 
– Control devices: FACTS 
– Hydrology: water flow vs power 

 
 

Modeled 
As 0-1 
variables 

Convexify 



Outline 

• Some projects on dealing with Uncertainty 
1. Stochastic dual dynamic programming with binary 

recourse for generation expansion planning 
2. Multistage robust optimization with decision rule 

for unit commitment 
 

• Some project on dealing with Non-convexity:  
3.   Optimal Power Flow (OPF) and Optimal    
      Transmission Switching (OTS) problem 



Act 1 

  Nested Decomposition and SDDP with Binary Recourse 
 



Multistage Stochastic Integer Program 

• Extensive form of an MSIP: 
 
 
 

• State variables:                binary (key assumption) 
• Local variables:                mixed integer 
• Assumptions: 

• 𝑓𝑛(𝑥𝑛,𝑦𝑛) linear in 𝑥𝑛,𝑦𝑛 
• 𝑋𝑛 compact, linear mixed-integer set 
• Complete recourse 

 



A Key Reformulation 

• A reformulation of MSIP: 
 
 
 
 
 
 
 
 



• Dynamic programming recursion: at node 𝑛 
 
 
 
 
 
 
 

• Nested decomposition algorithm: 
– Approximate cost-to-go 𝛹𝑛𝑖 𝑥𝑛 ≤ ∑ 𝑞𝑛𝑛𝑄𝑚 𝑥𝑚𝑚  
– Iteratively strengthen 𝛹𝑛𝑖  by linear cuts 

Dynamic Programming Recursion 



Nested Decomposition Algorithm 



Nested Decomposition Algorithm 



SDDP 



Properties of Linear Cuts 



• Theorem 2: 
If the cuts used in Nested Decomposition (ND) are valid, 
tight, and finite, then ND terminates in a finite number of 
iterations with an optimal solution. 
 
• Theorem 3: 
Suppose the sampling step is done with replacement, and 
the cuts generated in the backward steps are valid, tight, 
and finite, then SDDP converges to an optimal solution in a 
finite number of steps with probability 1. 
 
• Convergence is what you would expect. However, a rigorous 

proof is not entirely trivial for Theorem 3. 

Convergence 



Existing Cuts 



Our Proposal: Lagrangian Cuts 

Theorem 1: Given any binary 𝑥𝑛𝑖 𝑛∈𝑇, the collection of Lagrangian  
cuts 𝑣𝑛𝑖 ,𝜋𝑛𝑖 𝑛∈𝑇 is valid and tight.  



Computational Results 



• J. Zou, S. Ahmed, A. Sun. “Nested decomposition for 
multistage stochastic integer programming with 
binary state variables”, submitted to Mathematical 
Programming, 2016. 

• J. Zou, S. Ahmed, A. Sun. “Partially adaptive 
stochastic optimization for electric power generation 
expansion planning”, INFORMS Journal on 
Computing, minor revision, 2016. 
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Act 2 

Multistage Robust Unit Commitment: Decision rules for 
Uncertainty 



Act 2: Multistage Robust UC 

• Motivation 
• Model, Affine Policy, and Algorithm 
• Computational Results: 

• Reasonable computation time 2718-bus 
• Near-optimal performance 
• Advantage over two-stage models 
• Average performance 



• Robust Optimization for unit commitment 
• Adaptive two-stage robust SCUC models 

– [Jiang et. al. 2012], [Zhao, Zeng 2012],  
– [Bertsimas, Litvinov, Sun, Zhao, Zheng 2013] (joint w. ISO-NE) 

• RO for security optimization 
– [Street et. al. 2011], [Wang et. al. 2013]         

• Unifying RO with Stochastic UC 
– [Wang et. al. 2013] 

• New types uncertainty set 
– [Guan Wang 2014] [Lorca Sun 2014] [Chen et. al. 2015] 

• Robust Optimization for economic dispatch 
• AGC control (two-stage: dispatch + AGC) 

– [Zheng et. al. 2012] 
• Affine policy (dispatch as linear function of total load) 

– [Jabr 2013][Warrington2012,2013] 

 

Recent Works on Robust UC and ED 



• A simple two-bus two-period example: 
 

 
 
• Claim: Two-stage robust UC is feasible 

– UC solution: 𝑥𝐴𝑡 , 𝑥𝐵𝑡 = 1,1  for 𝑡 = 1,2 
– Feasible dispatch solution: 

• 𝑝𝐴1 𝒅 = 12 + 2
5
𝑑𝐴2 − 12.5 , 𝑝𝐵1 𝒅 = 12 − 2

5
𝑑𝐴2 − 12.5  

• 𝑝𝐴2 𝒅 = 12.5 + 3
5
𝑑𝐴2 − 12.5 , 𝑝𝐵2 𝒅 = 12.5 − 3

5
𝑑𝐴2 − 12.5  

– Satisfy 𝑝𝐴𝑡 𝒅 + 𝑝𝐵𝑡 𝒅 = 𝑑𝐴𝑡 + 𝑑𝐵𝑡 , 𝑓𝐴𝐴 𝒅 ≤ 𝑓𝑚𝑚𝑚 ,∀𝒅 ∈ 𝐷  

Issues with Two-Stage Robust UC 

𝐴 𝐵 

𝑓𝑚𝑚𝑚 = 1 

𝑝𝐴0 = 12, 𝑅𝐴 = 1 𝑝𝐵0 = 12, 𝑅𝐵 = 1 

𝑑𝐴𝑡  𝑑𝐵𝑡  Demand uncertainty sets: 
𝐷1 = 12,12 ,  
𝐷2 = 𝑑𝐴2,𝑑𝐵2 :𝑑𝐴2 + 𝑑𝐵2 = 25,𝑑𝑖2 ∈ 10,15  



• Can we find a policy 𝑝(⋅) that does not look into 
the future? i.e. 𝒑1 𝒅1 ,𝒑2(𝒅1,𝒅2)? 
– Because real-time dispatch cannot depend on future 

 
• No feasible non-anticipative policy exists! 

– No feasible 𝒑1 s.t. for any 𝒅2 ∈ 𝐷2 there exists 𝒑2 
– If 𝑝𝐴1 ∈ [11,12]: 𝑝𝐴2 ≤ 13, impossible to satisfy 𝒅2 = (15,10) 
– If 𝑝𝐴1 ∈ [12,13]: 𝑝𝐵2 ≤ 13, impossible to satisfy 𝒅2 = (10,15) 

 
• Bottleneck: Ramping constraint 

 
 

 

Capture Multistage Nature is Critical 



Multistage Robust UC 



• Tractable alternative for 𝑝 ⋅ : 
 
 

• Multistage robust UC with affine policy: 

Affine Multistage Robust UC 



Simplified Affine Policies 

Spatial Aggregation 

Temporal Aggregation 



• Dualization approach does not work: 
– Traditionally, robust constraints are dualized 
– Resulting problem is too large for power systems 

 
• Constraint generation makes sense: 

 
 

• However, naïve CG also does not work 

Solution Method 



• Valid inequalities for 𝑥 and specific 𝑑’s for ramping, 
generating limits, and line flow  
 

• Fixing binary decisions and finding cuts by CG with an LP 
master 
 

• Iteratively improving policy structure (e.g. 𝑊𝑖 → 𝑊𝑖𝑖) 
with approximate warm-start (not solving 𝑊𝑖 fully) 
 

• Exploiting structure of special policy form: e.g. pre-
computing all needed constraints for ramping and 
generation limit constraints for 𝑊𝑖𝑖-policy.  

Solution Method 



• How good is the proposed algorithm? 
– Effectiveness of various algorithmic improvements 
 

• How good is the simplified affine policy? 
– Compared to the “true” multi-stage robust UC 

 
• Why should we use multi-stage formulation? 

– Worst case infeasibility of two-stage robust UC 
– Managing Ramping capability 

 
• How good is affine UC “on average”? 

– Rolling-horizon Monte-Carlo simulation 
– Average performance in cost, std, reliability 

Computational Study 



How Good is the Algorithm? 

Solution time (s) for three test systems using 𝑾𝒊𝒊 policy: 



How Good is the Simplified Affine Policy? 

• How good is the simplified affine policy? 



How Good is the Simplified Affine Policy? 



Why Multistage? Worst-Case 

• Worst-case (US$) of multistage robust dispatch under two-stage and  
Multistage UC solutions for the 2718-bus system.  



How Good is Affine UC on Average? 

• Average performance over independent demand 

0.46% 

0.95% 



How Good is Affine UC on Average? 

• Average performance over wind power and persistent demand 

1.23% 

24.52% 



• A. Lorca, X. A. Sun Adaptive Robust Optimization with 
Dynamic Uncertainty Sets for Multi-Period Economic Dispatch 
under Significant Wind, IEEE Trans Power Syst 30(4): 1702-
1713, 2015 

• A. Lorca, X. A. Sun, E. Litvinov, T. Zheng, Multistage Robust 
Optimization for Unit Commitment Problem, Operations 
Research, 64(1): 32-51, 2016 

• A. Lorca, X. A. Sun, Multistage Robust Unit Commitment with 
Dynamic Uncertainty Sets and Energy Storage, IEEE Trans 
Power Syst, minor revision, 2016 
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Act 3 

Optimal Power Flow (OPF) and Optimal Transmission 
Switching (OTS) problem: Fast Convexification and Cutting 
Plane Method to deal with non-convexity 



AC Optimal Power Flow 
Data: 
• Network: 

 
 

• Load at bus 𝑖: 
 

 
• Generator at bus 𝑖: 

 
 
 

• Voltage bounds at bus 𝑖: 
 
 

• Network line admittance: 
 
 

• Line flow limit: 



AC OPF Formulation: Variables and Objective 



AC OPF Formulation: Constraints 



AC OPF Reformulation 

• Introduce Hermitian matrix 𝑋 = 𝑒 + 𝑖𝑖 𝑒 + 𝑖𝑖 𝐻: 
 
 
 
 
 
 
 
 

• Standard SDP relaxation: Ignore rank constraint 



• Local solvers by Newton-Raphson and Interior-Point methods 
 

• Convex relaxations using semidefinite programming (SDP) and Lasserre 
hierarchy: (Lavaei and Low, 2012; Madani et. al., 2013; Zhang and Tse, 2012; 
Lavaei et al., 2014, Molzahn et al. 2013, Molzahn and Hiskens, 2014, Chen 
et al. 2015)  
 

• Second order cone program (SOCP) relaxation: (Jabr 2006, Hijazi et al., 
2014) 
 

• Approximate LPs with guaranteed bounds for the AC-OPF problem on 
graphs with bounded tree-width (Bienstock and Munoz, 2015) 
 

• Global optimal solutions based on branch-and-bound (Phan, 2012) 

Recent Literature on OPF 



Non-Convexities in SOCP reformulation 

Non-convex quadratic mapping: 
𝑒𝑖 , 𝑓𝑖 , 𝑒𝑗 , 𝑓𝑗 → (𝑐𝑖𝑖 , 𝑐𝑗𝑗, 𝑐𝑖𝑖, 𝑠𝑖𝑖) 

is not injective (so not invertible anywhere). 

Non-convexity modeled: 
Surface of SOCP cone 
within bounds on c, s 

What we should have: 
 
 

Non-convexity NOT modeled: 
Angle sum to 0 (KVL) 

Change of variables: 



• Surface of SOCP cone: 𝑐𝑖𝑖2 + 𝑠𝑖𝑖2 = 𝑐𝑖𝑖
𝑗 𝑐𝑗𝑗𝑖  

– One direction is convex: 𝑐𝑖𝑖2 + 𝑠𝑖𝑖2 ≤ 𝑐𝑖𝑖
𝑗 𝑐𝑗𝑗𝑖  

– Other direction is reverse convex: 

• 𝑓 𝑐𝑖𝑖 , 𝑠𝑖𝑖 = 𝑐𝑖𝑖2 + 𝑠𝑖𝑖2 ≥ 𝑐𝑖𝑖
𝑗 𝑐𝑗𝑗𝑖 = 𝑔 𝑐𝑖𝑖

𝑗 , 𝑐𝑗𝑗𝑖  

• 𝑓 is convex, 𝑔 is concave 
• Overestimate of 𝑓 and underestimate of 𝑔 by hyperplanes 

• Angle-sum-to-zero constraints:  
– Arctangent envelopes 
– Trigonometric reformulation 
– SDP separation  

Relaxation of Surface of Cone 



Arctangent Envelopes 



Cycle Constraints 



• 3-cycle: 
 
 

• 4-cycle: 
 
 

• Larger-cycle: 
     Decomposition 

3-Cyle, 4-Cycle, and Larger Cycles 



SDP Separation 



• Workhorse: SOCP relaxation for fast computation 
• Strengthen SOCP relaxation for key non-convexities: 

– Type 1: Characterize convex hull and linear outer envelope 
– Type 2: Three approaches to convexify KVL: 

• Cycle constraints: polynomial equations McCormick Linearization 
• Arctangent envelope: Linear upper/lower approximation 
• SDP separation: Lift-and-project  

• Results:  
– IEEE instances (Easy): 

 
 

– NESTA (Hard): 
 

Our Strategy for Solving AC-OPF 



Our Strategies for Solving AC-OPF 



• B. Kocuk, S. Dey, X. A. Sun. Inexactness of SDP relaxation for 
optimal power flow over radial networks and valid inequalities 
for global optimization. Accepted for publication at IEEE 
Transactions on Power Systems, 2015  

• B. Kocuk, S. Dey, X. A. Sun. Strong SOCP Relaxation for the AC 
Optimal Power Flow, to appear in Operations Research, 2016 

• B. Kocuk, H. Jeon, S. Dey, J. Linderoth, J. Luedtke, X. A. Sun. 
Cycle-based Formulation and Valid Inequalities for DC Power 
Transmission Problem with Switching, to appear in Operations 
Research, 2016 

• B. Kocuk, S. Dey, X. A. Sun. Minor relaxation and SOCP based 
spatial branch-and-bound for the OPF problem. To be 
submitted, 2016 
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• Significant challenges: 
– AC Optimal Switching Problem (up to 300-bus) 
– AC OPF Global Optimization (up to 3375-bus) 
– Multiple-phase AC OPF (need new techniques) 
– Robust UC with AC OPF 
– Multistage stochastic UC 
– Sensor-driven real-time operation and maintenance 

scheduling 

• Many more challenging computational problems! 
• “Bridging the Gap” between OR and Engineering 

is so important! 
 

 

 
 

Some Concluding Remarks 



 
 
     Happy Birthday to CORE! 
 
 
 
 
Andy Sun 
ISyE @ Georgia Tech 
andy.sun@isye.gatech.edu 
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